g0 S TR S Y ot

Lo i e

K1

4

C' £
"

.

T
PR
-

A

e it e B pjﬁ

XX. Communications Systems Research
TELECOMMUNICATIONS DIVISION

A. Sequential Decoding: Shoit Constraint Length
Convolutional Codes, J. A. heller

1. Introduction

Much of the past inter:st in convolutional codes has
been in the use of these codes with sequential coding,
There the problem of finding “good” codes is not pressing,
because arbitrarily small error probabilities can (albeit at
the expense of some ev~sure probability) be had by using
almost anv code of s Tciently long constraint length. The
complexity of a sequential decoder is not very sensitive
to constraini length.

Recently, Viterbi (Ref, 1) described a decoder for con-
volutional codes which was subsequently shown to be
maximum likelihood (Ref. 2). The number of operations
required by the Viterbi algorithm per decoded bit is a
constant for an-- given constraint length K and increases
exponentially with K. This contrasts with brute force
maximura likelihood decoding where the decoder com-
plexity goes up exponentially with block length which is
typically many times K.

The Viterbi algorithm, while not practical for large K,

may perhaps be useful in the range K = 4 to 10. Since it
is limited to small K, finding good short constraint length
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codes becomes important, The Viterbi algorithm has sev-
eral advantages over sequential decoding for small K.
First, the time to decode is fixed; hence buffering of the
received data is unnecessary. Second, decoding progresses
at the received data rate; there is no need for the decoder
to ke 10 to 20 times faster than the incoming data « i~
as is necessary in sequential decoding to combat bufier
overflow. Third, resynchronization by inserting a known
sinele-cor “raint-length-long sequence into the data
stream periodically is unnecessary. The most important
result is that for systems giving a bit exror probability of
about 5 X 103, such as prevails in the Mariner Mars 1969
high rate telemetry system, convolutional codes with
short constraint length decoded by the Viterbi algorithm
yield a gain of about 1 dB over the use of biorthogonal
codes. Also, with the Viterbi algorithm there are no
crasures. And the bandwidth expansion is not high. Hence,
the use of short constraint convolutional codes is very
attractive in future telemetry systems.

2. Properties of Convolutional Codes

Figure 1 shows a typical binary (nonsystematic) con-
volui:nal coder. The code rate is Ry = 1/v. In Figure 1
Ry =15 bits/code symbol. The code itself is determined
by the connections between the shift register stages and
the mod-2 adders, It is usually specified by v connection
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Fig. 1. Binary convolutional coder
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vectors, one for each adder, g, 8., * - ', g The jth com-
ponent of g; is a 1 if stage j of the shift register is con-
nected to the ith adder, otherwise it is 0. A more compact
metnod of specifying the code is a Kv coraponent vector f
which contains the components of the connection vectors
interleaved, that is,

f1:g11: fa= e, ", fv:gvl

fv+1 = g2y ", va = vk

Convolutional codes are special cases of group codes.
The generator matrix, G, of a convolutional code is shown
in Fig, 2. The first row of the matrix is the vector f fol-
lowed by zeros. Each succeeding row is the previous row
shifted v places to the right with the vacated elements
filled with zeros. The number of rows L in the matrix is
the length of the input information stream. It follows that
there are (K+ L — 1)v columns in G; this is the block
lengch of the code. The (K + L — 1) v element code word
y is related to the L element input sequence x by

u=xG 1)

The code is thus the set of all 2 linear combinations of the
rows of G.

The problem of finding the best code, in the probability
of error sense, for a given K is difficult if not impossible,
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Fig. 2. Convolutional code generator matrix

Other criteria such as maximizing the minimum code
word distance do not guarantee that error probability is
minimized (this has been shown by simulation). However,
lIow error probability seems at least to be well, if not per-
fectly, correlated with large minimum distances; that is,
a large minimum distance implies that all code word
distances are large.

An upper bound on minimum code-word distance for
systematic codes has been obtained previously (SPS 37-50,
Vol. IHI, pp. 248-251), and will be stated here for non-
systematic codes. Since a linear convolutional code is a

JPL SPACE PROGRAMS SUMMARY 37-54, VOL. il

/



sy A

Ki
ot
&
e

group code, the set of distances from the kth code word
to all other code words is independent of k. Thus without
loss of generality assume the all-zero code word (corre-
sponding to the all-zero information sequence) is the cor-
rect code word. It is a well-known property of group
codes that the total number of ones summed over all code
words is less than or equal to the total number of =eros
(Ref. 3), with equality when no column of G is all zero.
The minimum distance must be less than or equal to the
average distance, and distance is simply the number of
ones in a code word. There are 2* codv words of which
2k — 1 are nonzero. The average number of ones in the
2% — 1 nonzero code words is thus

20 r(K+L—1)c
2r— 1 )

Hence d,, the minimum distance, is upper bounded by
this quantity.

g2 r(K+L-—1)u] o)

TS N

This bound is true for input sequences of any length L.
It is also true for nonzero sequences of length h < L.
Therefore, a tighter bound can be obtained by minimiz-
ing on h

.2 [(K+h—-1v
=
= Mg [ 2 ]

3)

It has been shown that the minimum occurs at a value
of b that varies as log K (SPS 37-50, Vol. I11, pp. 248-251).
As a limiting case, for large K, Eq. (3) reduces to

Ko
dm S ".‘2— (4)

which says that for large K the minimum distance is less
than about half a constraint length of code symbols. For
K < 10, the optimum h, h,, will be from 2 to 4. When
h =1, we have the bound d,,= Kv which can be achieved
with a code with 2 code words (G has one row, namely f)
with all elements of f equal to 1.

Equation (3) can be considered as a sequence of apper
bounds for nonzero input sequences of length b =1to L
(we may take L = oo since there is no need to segment
the data into blocks in the Viterbi algorithm), This sug-
gests the following ad hoc scheme which has been useful
in generating small K codes with a minimum distance
equal to or near the upper bound. Let d (k) be the actual
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minimum distance for a convolutional code of block
length h.

Initially choose all Kv elements of the connection vec-
tors, g;, equal to 1. Thea as previously stated, d (1) = Kov.
Looking at the generator matrix with two rows; however,
it is clear that d (2) = Zv, which is the weight of the code
word corresponding to the input sequence 11. Now change
generator elements from 1 to 0 in such a way that each
zero is surrounded by ones. Each time this is done, d (1)
will drop by 1, and d(2) will increase by 2.

Continue this until min {d (1), d (2)} is maximized. This
minimum will then be the integer part of the right side
of Eq. (3) for h =2. If K <4 this will be sufficient to
achieve the upper bound of Eq. (3). For K up to about 6
the bound can be achieved simply by trying several per-
mutations of the zeros in the connection vectors. For
K > 6, h, gets larger, and d(j) for j > 2 must be con-
sidered. The manipulations soon become too unwieldy
for hand computation.

As an example of this procedure consider generating a
K = 4, rate %5 (v = 3) code. Equation (3) yields d,,=< 10 at
n, = 2. Start out with

glzg::ggzllll

This yields d (1) =12 and d (2) = 6. Now make the follow-
ing change

g, = g, = 1111, g. = 1011

Now d (1) = 11, d(2) = 8. Finally let

g, = 1111, g, = 1101, g = 1011

Then we have d (1) = d(2) = 10, A simple check ensures
that d (i) =10, i > 2. This code is the K =4 code used
in the computer simulation described in the next two

sections.

Using the Viterbi algorithm, convolutional codes re-
quire 25 likelihood comparisons to decode one bit.
K-bit binary block codes when encoded and decoded
optimally require (1/K) (2¥ — 1) comparisons per bit. In
the first analysis it is thus meaningful to compare the per-
formance of a K-bit block code with a constraint length K
couvolutional code.

For the white gaussian noise channel a biorthogonal
code is very nearly optimum. As an example, for a 4-bit
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biorthogonal code, the minimum distance (in terms of
signal energy-to-noise ratio) is 2E; N, where E,/N, is
the energy per bit to noise ratio, There are 14 signals at
the minirnum distance.

The K = 4 convolutional code previously described
has d,, = 10. Since there are 3 code symbols per bit, the
minimum distance in signal energy is (10/3) Ey/N, =
3.33E,/N,. Furthermore there are only 4 code words at
this distance at any given decoding step. All other code
words are at a greater distance.

3. The Decoding Algorithm

The Viterbi algorithm is well documented (Refs. 1
and 2), and the details will not be repeated here. Suffice
it to say that operating on an infinice stream of input data
the algorithm never makes final bit decisions. A step in
the decoding process consists of generating the likeli-
hoods for 2% possible bit streams and narrowing this down
to 251 using 25! pairwise comparisons. Each compari-
sou is in many ways similar to a “look forward” step in
sequential decoding. The comparisons can be done in
parallel. In practice the decoder makes bit decisions after
a delay of several constraint lengths. The algorithm seems
in the first analysis to be quite amendable to special-
purpose machine implementation. The major operations
in a step are “add,” “compare,” “shift,” and “register
exchange.” The principal memory required is 251 shift
registers of length about 3 to 5 constraint lengths.

As far as synchronization is concerned, the decoder
needs only branch synchronization, ie., it must know
which code symbols corresponds to the first adder output
in the coder. Since the deccder retains bit siream outputs
corresponding to all coder states, the decoder will with
high probability synchronize within several constraint
lengths when started in an arbitrary place in the received
data stream.

4. Experimental Resulis

The Viterbi decoder was simulated on a SDS 930 com-
puter. Received data was generated in 1000-bit blocks,
and the decoder was started unsynchronized at the begin-
ning of each of these blocks. The codes used were rate %,
and the channel simulated was a binary input 8-level
quantized output white gaussian noise channel. The quan-
tization levels were chosen as in Ref. 4. After allowing
50 bits for resynchronization, the counting of decoding
errors was started. Each of the 25-* decoder output bit
streams was 48 bits long, After a decoding step, a decision
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was made on the oldest bit in the bit stream, by choosing
the one corresponding to the most likely stream,

Three codes with different constraint lengths were
tested for several values of Ey/N,. At least 200,000 bits
were decoded for each point. The bit error probabilitics
for the K = 4, 6, and 8 codes are shown in Figs. 3, 4, and 5,
respectively. The code gencrators used are also shown in
the figures. The K =4, d,, = 10 code has already been
described. For K = 6, Eq. (3) yields an upper bound of 13
on d,,. This d,, is actually achieved with the code shown,
This code was also generated using the ad hoc scheme
and some trial and error. Later, a search program was
written to generate all K = 6, v = 3 codes with d,, = 13.
Of several tested, the ore shown in Fig. 4 proved the best.

At K = 8, the bound yields d,, =< 17. No d,, = 17 code
was found by hand calculation, and a machine search has
not vet been tried. The code used has d,, = 16 and is by
no means necessarily the best K = 8 code. It was, in fact,
the only one tested.

Also shown in Figs. 3, 4, and 5 are the corresponding
K-bit biorthogonal code bit error probabilities (Ref. 5).

5. Conclusions

The error probability curves of Figs. 3, 4, and 5 clearly
indicate that constraint length K convolutional codes per-
form considerably better than K-bit biorthogonal codes.
For instance at K = 6 and P; = 10-* about 1 dB is to be
saved. There is also the fact that bandwidth and energy
per code symbol required by convolutional codes is inde-
pendent of K while for biorthogonal codes bandwidth goes
as 2%1/K and energy per symbol as K2-5-0_ Included in
Fig. 3 is the bit error probability curve for a K = 7 bior-
thogonal code. Observe that a K = 4 convolutional code
is superior to a K = 7 biorthogonal code.
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B. Coding and Synchronization Studies: Dynamics

of Second-Order Phase-Locked Loops,
W. C. Lindsey*

1. Introduction

This article discusses some recent results obtained
relative to the statistical dynamics of the phase-error
process in second-order phase-locked loops.? Briefly, the
problem can be described as follows: The phase-error

!Consultant, Electrical Engineering Dept., University of Southern
California,

Lindsey, W. C., “Nonlinear Analysis and Synthesis of Generalized
Tracking Systems,” Proc. IEEE (in press). Also USC EE317,
University of Southern California, Los Angeles, Calif., Dec. 1968.
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process ¢ (¢) in a phase-locked leop system undergoes
diffusion much like a particle in B.ownian motion (Ref. 1);
hence, the variance of the phase-error becomes infinite
in the steady state. Previous work (Refs, 2, 3, and 4) on
determining the probability distribution of the phase-
error in the steady state of a first-order loop was accom-
plished by reducing the phase-error modulo 2« to a ¢ (¢)
process. Such a reduction ignores how many cycles have
slipped with the passage of time so that diftuzion of the
phase-error is taking place. For finding telemetry error
probabilities, that is all that is needed; for estimating
tracking accuracy, however the & (t) process itself must
be studied. To completely describe the ¢ (£) process, one
must account for that component of the variance of the
phase-error which causes diffusion, i.e., cycle slipping.
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This is perhaps best described by evaluating the diffusicn
cocfficient, i.e., the rate with which the variance of the
phase-error is approaching infinity, and in some way
combine this component of the variance with the variance
of the phase-crror reduced modulo 2.

For a sccond-order loop, this article discusses an ap-
proximate solution for the steady-state distribution of the
phase-error reduced modulo 2» and establishes the re-
gions of validity of this solution by comparing it wit.
experimental results. Also, formulas are presented for
(1) the diffusion coefficient of the phase-error process,
(2) the expected values of the time intervals between
phase jumps, (3) the expected number of phase jumps
per unit time, (4) the expected number of phase jumps
“to the right” and “to the left,” (5) the expected value of
the phase-error rate in the steady state, and (6) the mean-
squared value of the phase-error rate in the steady state.
In the limit, as the system damping arproaches infinity,
the results are then valid for the first-order loop.

2. Loop Model and Phase-Error Density
Reduced Modulo 27

For a phase-locked loop system with lcop filter,

_ 1+ TP
PO =Ty (1)

it has been recently shown (Footnote 2) that the proba-
bility distribution of the phase-error reduced modulo 2»
is given to a good approximation by

_ exp[B¢ + acose]
P$) = Trexp [—nBl |18 ()]

Xf‘ﬁm exp [—pBx — acosx] dx (2)
¢

where I, (x) is the imaginary Bessel functicn of order v
and argument x and ¢ belongs to any interval of width
2w centered about any lock point 2n=; n is any integer.
The parameters « and B8, which characterize Eq. (2), are
related to the various system parameters through

F: = T2/T1

__(1’+1) 1
o= ——
r rad

@)
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where G = sin ¢ — sin ¢, the overbar denotes statistical
average, Q, represents the amount of loop detuning or
frequency offset, p is the signal-to-noise ratio in the loop
bandwidth, and

if I'ty > >‘ T2

The parameter

1= AK+}/r, = ({/4)%

where ¢ is the “loop damping” and AK represents open
loop gain. Moments of sin¢ (Footnote 2) are given by

—— _ B sinhxf 10 (e)]

sl = ; — "
- L] 4 1))
o B\ « M
057 = Re [’ i (;)I,:(i s («)]
with
kg = sin® ¢ — [s_m—;ﬁ]z (5)

and Re[+] denotes the real part of the quantity in the
brackets. It is clear from Egs. (2) and (4) that p (¢) will
be symmetric when the loop is designed such that g =0,
It is easily shown that in the limit, as » approaches in-
finity, Eq. (2) reduces to a result given by V. I. Tikhonov
(Refs. 2 and 3) for a first-order loop.

The expected value of the phase-error can be found
from Eq. (2) and the well-known Bessel function expan-
sions of exp (£« cos ¢). Witkout zoing into details (Foot-
note 2), we have

7= or@ds

2 sinh g =~ m Iy (a)

P @ L+ )
Lie)  In(e) N 2m(—1)FI(e)
xRt e ) ]
k=1
kzm
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It is clear from Eq. (6) that with g =2 0, ¢ = 0. Furthermore, ¢* is given (Footnote 2) by

7o wvin

_ sinh=f3 J L (a) [Tr'“ o(e)
@l VB L 3 *”2:

—1)*I (« o
* Q”Z BTk [(

The variance o3 = ¢* - (¢)? is minimized when the loop
is designed such that 8 =0 and « is maximized (Foot-
note 2). For this case, from Egs. (6) and (7), we have

w2 4 2 — 1\
Gd=gt 1.,(a)z( k'}) i) ®

ki

Finally, the expected value of the phase-error rate ¢
and the mean-squared value (Footnote 2) are given,
respectively, by

H

é — AKsing

$* = K3, [o® (sin ¢)* + B° — 2B sinp] 9)
0'¢' - K(ma Tsing + 2Kon (1 ..\0‘ 2)
where

p(r+1)

Knn - 21.01, 1

The above equation, which relates to o4 to o5, 4, may be
interpreted as an “uncertainty hyperbola.”

Figure 6 illustrates a plot of the variance of the phase-
error o4 reduced modulo 2= for various values of r with
B8 = 0. For purposes of checking the validity of the ap-
proximation which lead to Eq. (2), we have plotted vari-
ous values of variance of the phase-error obtained by
direct measurement in the laboratory (Ref, 5). From
Fig. 6 it is clear that, for most practical purposes, Eq. (2)
characterizes the distribution p (¢) for all p > 0dB when
r=2, @, =0. The larger the value of r, the better the
approximation,
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3. Statistical Dynamics of the Phase-Error Process a;(f)

One method of accounting for the fact that the loop
actually skips cycles is to evaluate the rate at which the
actual process at work in the loop undergoes diffusion,
This parameter, the so-called diffusion coefficient D
(Footnote 2 and Ref. 1), is (2#)* times the total average
number S of phase jumps per unit of time has been shown
(Footnote 2) to be given by

4w, r* cosh =B

ol IF Tp@p ~ &S (0

In Section 4, we shall see that the variance of the phase
error ¢ (f) at time ¢ starting from zero error at time ¢ =0 is

V=% Dt (11)

since the cross term E [4x¢ (t) k(t)] is essentially zer -
This last fact follows from the fact that E[¢(t)] =0
while ¢ (t) is essentially independent of k(). Here, & (t)
is the unique integer with

$(t) = () + 2wk (2)

Figure 7 illustrates a plot of the normalized diffusion
coefficient for various values of p and » with 8 =0, From
this figure, it is seen that diffusion will not appreciably
effect the measurement in a finite time if p>3. Via
Eq. (11), Egs. (6) and (10) can be used to acconnt for
the effects in which cycle-slipping produces errors in
Doppler measurements,

The expected time interval between successive cycle
slipping events is given (Footnote 2) by

wp(r+1)* |Ip(a)]?

aT = w,  coshmB
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SECOND-ORDER PLL F(p) =
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Fig. 6. Variance of the phase-error versus loop
signal-to-noise ratio p for various values of r
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where it can be and has been assumed that the successive
instants in time when phase svnchronization is lost are
statistically independent.

In the case where Q, /-0, the case of greatest practical
interest, the average number of phase jumps “to-the-
right,” say I, is of interest. Formulas for I, and I are
given (Footnote 2) by

_ exp (7)1

2 sinh = (12)

where I is the (net) average number of phase jumps per
unit lime; i.c.,

[=1 —] = |:p (r+ 1) ]“' sinh =g (13)

wy, (iw)* |1,3(c)}*

Both I, and I. are zero for the unstressed loop with
Q, = 0. The quantity I is related to the total expected
number of phase jumps per unit time S through the
equation

I= sinh = S = (tanh=B) S (14)

cosh=f3

4, Statistical Dynamics of the Phase-Error Process ¢ ()

The actual loop phase crror ¢ (t) is related to the re-
duced modulo 2x process ¢ (¢) through

Bt) = 2ak + 1) (15)

where

- [a(t)z—,,qb(t)] (16)

is the largest integer which does not exceed the bracketed
ratio, Thus, k is a discrete random variable which takes
on integer values at random points in time. The mean-
squared value of the ¢ () process is given by

oh(f) = o3 () + @n) ot +2r[kp ~ K3l (17)

The event that k cycles are slipped in ¢ seconds will
be denuted by of. If we assume that of is a Prisson-type
process, then the quantity S, representing the total aver-
age number of phase jumps per unit time, can be used
to produce a probabilistic model for the phase jumping

2L SPACE PROGRAMS SUMMARY 37-54, VOL. Il

process that causes diffusion of the phase error process
& (t). Namely,

Sty exp [51]

P(-5) = P(k) - 2 (18)
The mean of k is
koSt (19)
and the variance is also given by
of = k* = of = St (20)

Experimental justification that supports the Poisson as-
sumption is given in Ref. 5 and SPS 37-43, Vol, III,
pp- 76-80. Thus, the mean-squared value of ¢ () becomes

0% () = 03 (¢) + (2m)* St 4 2 [k — kg] (1)

and in the steady state, ¢ (t) has infinite variance. Now,
D = (2x)*S represents the diffusion coefficient of the
@ (t) process, ic., the rate at which ¢ (f) is undergoing
diffusion. Furthermore, if the randon: variables k and ¢
are independent, as is rcasonable, we can write

lim AU% = 0'% (t+T) — oi(t) = DT (22)

tow ¢

Finally, the probability of loosing phase-lock in t seconds
(i.e., the probability of slipping one or more cycles) is
given by

Plof>11=1~exp[—5t] (23)

This result should prove useful in the design of phase-
coherent doppler tracking systems.
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C. Coding and Synchronization Studies:
On Solution to the Second-Order
Phase-Locked Loop, J. X. Holmes

1. Introduction

Understanding of phase-locked loop (PLL) operation
began in 1955 with the now classical paper by R. M. Jaffe
and E. Rechtin (Ref. 1). Starting with their basic lincar
analysis, there have been a wealth of papers concerning
extensions, refinements, applications, and new approosches
in the analysis of PLLs, as well as other automatic phase
contro! Jevices.

This present article is concerned with computational
simplification and an claboration of the analysis initiated
in a previous article (SPS 37-49, Vol. 111, pp. 297-300), in
which an expression for the variance and probability
density function of the phase crror was obtained for a
second-order PLL. The solution was simplified with the
introduction of a mean-square fit approach to approxi-
mate a certain unknown conditional mean, This idea,
along with an extension and generalization of a tech-
nique due to A. J. Viterbi (Ref. 2), an.”™ .omc aspects of
R. C. Tausworthe’s “lincar-spectral theory” (Ref, 3),
allowed the development of a g¢ 1 approximation to the
stationary phase-error variance recuced modulo 2.,

Recertly, W. C. Lindsey,’ using the mean-square
approach introduced in SPS 37-49, Vol. 111, has developed
a generalization to Nth order loops and has considered
many other aspects associated with the nonstationary
case. An additional list of references on the subject of
PLLs can be found in Refs. 2, 3, and 4,

‘Lindsey, W. C., “Nonlinear Asnalysis and Synthesis of Generalized
Tracking Systems,” Proc. IEEE (in press).

A sin ()

2. Derivation

The equation of operation, for zero initial detuning and
ro modulation, is given in operator form by (Ref. 3)

v kS

+ AK
o i 5
where s is th,(\a Heaviside operator d/dt, ¢ (£) is the phasc-
error 8 (£) — 0 (t), and K == k,k,, k.. The PLL model under
consideration is shown in Fig. 8. For the practical inte-
grator, we have the following loop filter:

11 S

F(S) - 1 '}‘ T3S

1,72 >0 (2)
where 7, and 7. are real nonnegative parameters. Substi-
tuting Eq. (2) into Eq. (1) yields
S (]. + T‘S) ¢ (t)

+ AK(QY + 745) sing (£) = —K (L -+ 7,5) n(t) 3)

To avoid obtaining an equation involving the derivative
of white noise, let

¢ () =mu(t) +u(t)
Then Eq. () is ecuivalent to the third-degree equation
(14 o) (i i AR sin o+ ] + K (9) =0
(4a)

However, it is sufficient, as far as the solution for ¢ (£) is
concerned, to solve

A

Llu] =7t + 4+ AKsin [r.t +u] = —Kn(t) (4b)

as long as ¢(0) = ¢(0) == 0 and .2 [u(0)] = —Kn (0).

INPUT n(1)

I+r25

K
™ T+r.§

Fig. 8. Mathematically equivalent model for the
second-orider phase-locked loop
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P

We can pow form a Markov vector process in y (2)
where the components are y. (£) = u (¢} and y, (t) = 1 (8).
Ve have, using Eq. {(4a),

dy,

a

I ()
1 AK | K 1

% = — sin (vt +40) — —n(t) — —y:(f)

““he Fokker-Planck equation to this system of equations
can be shown to be (SPS 37-49, Vol. I1I)

-~

p_ @ IAK 1
ot T Wy, t e e ) ey

1 ¢ K:N, ¢
+:3—yj(ym)+ 1 g P (6)

i

where we consider the class of solutions that have con-
tinuous first-order derivatives in ¢ and y, and a continuous
second-order derivative in y,. The notation p (Y1, Yo, £)
denotes the joint probability density function of y, =
[yo (), 4. (£)] at time t. In order to obtain an equation in
p (¢, ), we make the following change of variables. Let
2 =1y, and ¢ = 7,4, + Y., then we obtain

[4 1 0 e
P wad=——w-a(E+3%)

0z 0¢
0 AK 1
Tzﬁ {[—1‘_1—8111([) + T‘r. (¢ — z):| P}
KZN({T:Z! 8"})
473 ¢ Y

this equation appears impossible to solve in terms of
known functions. Hence, we are led to obtain an ap-
proximation for the density of ¢. In fact, let us find
only the stationary density function with 9p/c¢ =0 in
Eq. (7). First, we integrate out the variable z noting that
P (¢$,2)| = 0, which follows from the fact that

R=%00

F (¢, —c0,t) =F (¢, 0,t) =0

and from the continuity of p (¢, z,£). We then have

(;1;— ;%)-%(w(@ —f:zr(«ﬁ,z)df)

+ “fl X %) [singp(4)] =0 (8)
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Furthermore, since 3 = ¢ — 7.y, we see that

| Rl = p@) s ==Ll
so that Eq. (8) becomes

7.AK

(2 1) 55 E@inpen + =
KN, [ 7.\ &P (9)
T (T> :

.¢‘.Z
This equation cannot be solved exactly either since
E (y,]¢) requires the joint distribution function of y, and
¢, which is not available. However, a generalization of
the method of Viterbi’s (Ref. 2) can be used to obtain
a more workable form of this conditional expectation term.
Multiply both sides of the differential equation for y; (f)
(Eq. 5) by exp (¢/7,) and integrate from #* to a. We obtain

AK /' . (t’ + t“>
exp
71 1+ 71

X sin¢ (') dt’ + TE/“ n(t') exp (t t+> dt’
1 t+

1

[sing p(¢)]

=0 (9

a—tt

y: (t) = y: (@) exp (___) +

T

Forming E [(*)| ¢¢], and noting
E[n@)|¢st’' >t] =0

we have, letting ¢’ = ¢+ + 7,

Bl @l =5 [ ew(2)E
X [sing (¢ + 7)| ¢ (£)] dr

+E I:y1 (a) exp (a :1#)

It can be shown that
lim E [ 1, (2) exp (a : t+)
a—> 0 1

Hence, we have, assuming continuity in the ¢ () process,

40|

if T1 > O
(10)

s0) | =0,

Bl =2 [ em(Z) Elsing ¢ + Dlo (01
(1)

Henuce, the evaluation of E (y.|$) has been reduced to
evaluating E [sin ¢ (¢ + 7)| ¢ (£)].

183

}..

Y



In order to proceed, it is necessary to approximate the
conditional expectation term in Eq. (11). First, note that

lim E [sing (¢ + )| ¢ (£)] = sin¢ (t)

Ty

Secondly, results of simulation studies indicate the follow-
ing relationship for r > 0:

E{sing (t + 7)| ¢ (t)] == f (v) sin ¢ (¢)

Consequently, we are led to try an approximation of the
form

E[sing (¢ + 7|4 (8)] = C (x) sin 6 (&

A reasonable method of estimating C (+) is to mini-
mize the mean-square error between C (r)sin¢ (f) and
E [sin ¢ (¢t + 7)|¢ (¥)]. To simplify the notation for the
following minimization, let ¢, = ¢ (¢ + ) and ¢, = ¢ (2),
and denote E4 as the ensemble average over ¢, and Eg,
as the ensemble average over ¢., given ¢,. With this nota-
tion, we then seek C (r) such that

Eg, {[Eg, (sin ¢2| ¢:) — C (7) sin ¢:]*}

is a minimum. Performing the minimization, it is found
that the optimum C (7), say C, (+), is given by

E (sin $1 sin 952) . Rgin ¢ (7)

Co(r) = E(sin?¢,)  Raing (0)

(12)

Hence, with the above mean-square fit to the term
E (sin ¢, ¢1), Eq. (11) becomes

AKsi * T
El9)= gy, o (2)Rumedr (3)

It might appear that this expression for the conditional
mean is divergent; however, as discussed below, the effect
of the exponential in the integrand of Eq. (14) is negligible
and, in fact, the integral is finite. Since the moments in
Eq. (12) cannot be determined exactly, an approximation
will be made similar to that used in linear spectral theory
(Ref. 3). In this theory, it is assumed that a function
v (s) y (—$) exists such that

7(8)y(—s) = msg; zs()s)

where Sy (s) is the spectral density of ¢, etc, Furthermore,
if F(s) is very narrow band, y(s) =y (a constant) and
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we have
7'-'] » R¢ (T) dr :—/ ' Rbi"‘?(f) dr

A determination: of v* is not necessary since it will be seen
later to cancel out. A tedious calculation shows that R (7)
is dominated by the exponential term

()
exp\ =5

where r = AK+3/7,, and for “normal” design we select the
parameters so that

T Wt
o0, 77 1

Consequently, the exponential term in Eq. (13) is neg-
ligible in its effect on the integral for normal design. We
neglect this term, exp (+/7,), in the ensuing development.
At this point then, we have

AKy?si =
E@lo) =" "0 ), Retdd  (4)

The final approximation to be made is to assume ¢ (£) is a
gaussian random process in order to estimate Rgiy ¢ (0)
for all signal-to-noise ratios (SNRs) of interest. (By using
the gaussian assumption, we reduce the calculation of the
phase-error density and its variance tc a simple calcula-
tion for all normal parameter values. The correctness of
this assumption is borne out by the comparison depicted
in Fig. 9.) Then, by Price’s Theorem (Ref. 5), we have

Rgin ¢ (0) = exp (—op) sinh (¢3) (15)

107! l
022 46 10" 2 4 6 100 2- 4 610
a

Fig. 9. Loop phase-error variance ¢} versus SNR
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Also,

'1 R¢ (T) dr = ; .Z R¢ (r) dr = -1'- S¢ (0) (16)
o 2/ . 2

Now using *he speciral equation (Ref. 3}, we obtain

-_— Nﬂ

S¢ (0) - 2A272

Hence, our approximation for E (y,|¢) is finally given by

N.K exp(od) |,
4A'rl sinh ag SInd) (17)

E(y]¢) =

and we see that, as promised, our result does not depend
on ¥*
Since our goal is to obtain the density function of ¢,

modulo 27, we define P (¢) as the sum of all p (¢ -+ 2zn)
and normalize it to integrate to one. Therefore, let

P(#)= 3 p(é+ 2nk)

k=-c

Then, from Eq. (9), we have for P (¢)

TzAK

T2 d
(2 —1) 5 (EGl9 P@] + 255 lsing P(9)

K°N, /.\? d?
o (2) e =0 09

T1

From Egs. (17) and {18) it can be shown that

4A
exp {m [r: — (71 — 1'2) B] cos ¢>}

P(g) = (19)
21r10 {—K_‘;V—I:‘t; [1'1 - (‘1'1 - 7'2) B]}
where
— N° €xXp ("3) (20)

'B - 4A21'2 sinh 0'3

Subsection 3 demonstrates the method for obtaining o}
versus No/4A? and, hence, through Eq. (20) the value of 8.

In the high SNR case (SNR > 10dB), 8 is given quite
accurately by 8 = 1/(1 + #) and the stationary phase-error

JPL SPACE PROGRAMS SUMMARY 37-54, VvOL. il

probability density for high SNRs becomes

=0 {1 () (i )]}

44, AKz3 + 1,
X exp [( KN(.T;:) (AKTI_-.' n 'f1> cos qs:l (21)

or, letting r >~ AX+3/7,, and noting r > > 7./7,, we have,
to a good approximation for high SNRs, the following
expression:

r = {L e sl oo vp i)
@)

As a partial check on our answer, note from Eq. (21) that
if 7, = 75, then F (s) = 1 (i.e., a first-order loop), and P (¢)
is given by

4A \ 4A
Dig: = (2n)" [10 (K—M—):l exp (7(7\7: cos ¢> 23

the exact result for the first-order loop (Ref. 2). Further,
if we let K and 7, = o such that K/+;, - K’, F (s) becomes
F (s) = (1 + 7,5)/s (i.e., the perfect second-order loop),
and we obtain in this case

P($) = (2n)” {Io [(%‘) (ﬁ)]}

4A? 1
X exp [(—N—o—) (——————AKTz Fim cos¢)] (24)

which agrees with Viterbi’s results (Ref, 2) derived for
the high SNR case.

3. Comparison of Results

It is of interest to compare the results of this mean-
square fit to the conditional mean (MSFCM) method with
that of some experimental data reported by F. G. Charles
and W. C. Lindsey (Ref. 4), as well as with some previous
results, The PLL used in Ref. 4 had the following relevant
parameters:

= 452

. = 0,125
AK = 5800

r=20
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The density function P (¢) in Ref. 4, was obtained experi-
mentally and the variance was computed from this,

In order to obtain a numerical value for the variance
from the method presented in Ref. 4, a knowledge of o3 ()
is required where

aw=[Teem ey ey

This method deviates from that given in SPS 37-49,
Vol. 111, pp. 297-300, in that a simplification is introduced

here that makes the evaluation of the variance a simple
matter not requiring the use of a computer.

A graph of oj(e) versus « is given in Fig. 1. From
Egs. (19) and (20), assuming , > > 7,, we have

- (A N, 2
@« <N01-2 )I:(l 44 1 -— 6_2002)] (26)

Hence, once ¢} and « are specified from Fig. 10, N,/4A*
can be computed from Eq. (26). The SNR A?/N,W,, is

then given by
4A? Ts
v = (577)(721) &)

and, hence, one has a simple method of obtaining the
relationship between of and SNR. Using this method,
the variance was computed and plotted in Fig. 9. As can
be seen from the figure, both the spectral method and
the MSFCM method provide relatively close fits, In fact,
the MSFCM method yields negligible errors for SNR =
2 dB, which enccmipasses the useful range of interest. For
SNR = 10dB, the linear spectral method, the MSFCM
method, and the lincar method, as well as the others, all
converge to essentially the same curve.
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D. Coding and Synchronization Studies: Power
Allocation Length Into Rapidly Varying
Phase Error, W. C. Lindsey® and J. F. Hayes

1. Introduction

In a recent paper (Ref. 1) design trends were estab-
lished for the allocation of power between the carrier and
the information-bearirg portion of a transmitted signal.
Both one-way and two-way phase coherent communica-
tion systems were considered, This work was predicated
on data rates high enough that any error in estimating the
phase of the radio-frequency carrier could be taken to be
constant over the duration of one signaling interval. In
the present work the same problem is considered; how-
ever, the assumption that the phase error is constant over
a symbol time is removed and the phase error is allowed
to change appreciably over the signaling interval. In both
works it is assumed that reference phase is derived exclu-
sively from the carrier. Alternate approaches that envision
deriving the reference phase from the data portion of the
transmitted signal lead to quite different results (Ref. 2).

Rapicly varying phase errors are known to affect the
operation cf command and telemetry systems in deep-
space communication systems. Consequently, a theory for
predicting their deleterious effects on system performance
is needed when carrying out a particular design or in the
testing of a fabricated system to see that system perform-
ance meets specification. In this article we draw heavily
upon the notation introduced in Ref. 1. We also assume
that the subcarrier and bit-sync jitter produce negligible
effects on the detection process. Procedures for handling
these effects, if appreciable, have been reported in Ref. 3.

2. System Model

We consider binary phase-shift-keyed signaling for
which the transmitted signals are of the form

p(t) = (2P)%sin [wt 4 (cos* m) xx ()], k=12

where x; = =1, P is the total transmitted power, and m
is the modulation factor which serves to apportion power
between the carrier and the side-bands. The signal p (£)
is disturbed in the channel by additive white gaussian
noise with a single-sided power density spectrum
N, W/hz. The signal also suffers a random phase shift
6 (t) in the channel. The received signal is demodulated

‘Consultant, Electrical Engineering Dept., University of Southern
California.
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at the receiver by means of a reference carrier preceded
by a phase-locked loop (PLL). This demodulation pro-
duces (Ref. 1)

y () =% () [(1 —m*) Pl%cos ¢ (1) +n' ()  (2)

where

$()=0()—0()

is the error between the phase shift in the channel 6 (¢)
and the estimate 9(t) of this phase shift given by the
PLL, and 7’ (¢) is white gaussian noise with single-sided
power density spectrum N, W/hz, The decision on the
transmitted signal is made by correlating y (t) with the
possible received signals. Therefore we form

g= f ") [ () — 2 (0] dt 3)

0

If ¢=0, we decide that x; was transmitted; otherwise
we take the transmitted signal to be «x. ().

3. System Error Probability

For a given realization of the random process ¢ (t),
0=t¢=T, q is normally distributed with mean

o
p=x2[(1—m?)P,~ | cos¢(t)dt
0
and variance ¢* = 2TN,. The conditional probability of

error has been shown (Ref. 1) to be given by

=11=[" exp (—%*/2)
Pe[¢(t),0=<t=T] /{R(L_Mm o dx
(4)

where

A (PT
R—2(—1\—7"->

1 /7 d
Y T_/o cos ¢ (t) dt

e

The average probability of error is found by averaging
over the random variable Y.

However, the exact computation of the probability
density f.(y) appears to be a formidable problem. In
order to circumvent this difficulty we assume that the
phase error is small enough so that the linear PLL theory
can be used. For most practical situations this assumption
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is valid. The consequences of this assurnption are two-
fold: First, from the linear phase-locked loop theory
(BRef. 4) we know that ¢ (¢) is a gaussian process; second
we can make the approximation (valid for the linear
region of operation)

1

Y=1-g5| #(d ®)

Thus the computation of fy (y) reduces to computing the
probability density of the integral of the square of a
gaussian process.

In the case of a first-order PLL, a useful approximation
to this density is known (Ref. 5). The PLL tracks a carrier
of power m*P immersed in white gaussian noise with
power density spectrum N, W/hz. The correlation func-
of ¢ (t) is

BbNo

Ry (r) =~ exp [ 4B 7|] (6)

where By, is the equivalent noise bandwidth of the loop
(Ref. 1). The probability density f;(z) of the random
variable

S~ T f o7 (0) dt 7

is well approximated by (Ref. 6)

fa(z) = = )% =7 exp (2/8) =¥ exp [— —;— (z + %)],
0=2=c (8)

where § = 1/TB,, is the ratio of the system data rate 1/T
to the bandwidth of the carrier tracking loop B;. The
density given by Eq. (8) is extremely accurate for § =35,
the case of interest here. We further assume that the
data is modulated onto a square-wave subcarrier whose
fundamental frequency is sufficiently large so that the
power in the modulation does not ente. into the band-
width of the loop. If, in fact, this is not the case, any
appreciable sideband power whic!: exists around the car-
rier would act as a self-noise in the loop and tend to
introduce more jitter on the reference phase. Such de-
signs are usually not interesting in practice, even though
the analysis is relatively straightforward.

Averaging Eq. (4) over the random variable Z we find
P —f“f (z)f“ o (~y/Ddyds  (9)
PN T e G SRS
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where

A@ = Rt -m(1-05)
ATHBL

m*P

g

pox

In the limit as § approaches infinity Eq. (14) becomes

1 »
P = / ep(—y/2)dy  (10)

E(1-m*)1%

which checks with the case for perfect phase synchro-
nization.

4, Numerical Results

The double integral in Eq. (9) has been evaluated over
a range of values for the parameters m, §, and R. In Fig, 11
we plot Py as a function of m* = P./P, with R as a pa-
rameter, for several different values of 8. These curves
exhibit the same behavior (Ref. 1) as those plotted for the
casc of slowly varying phase error. For each value of R
and 8 there is an optimum modulation factor, e.g., my,
for which the probability of error is minimum. Also, m,
decreases as 8§ increases. In Fig. 12 we plot mj as a func-
tion of R with § 2s a parameter. Finally, in Fig. 13 we
show the minimum probability of error Py, corresponding
to m, as a function of R with § as a parameter. These
results may be compared with those obtained in Ref. 1
for the case where ¢ (¢) is constant for 0 =¢=T. They
may be further used to design phase-coherent systems
with 8§ < 1.

5, Conclusions

As we have seen here and in Refs. 1 and 3, the phase-
error introduced into the data detection process by a
radio-frequency carrier tracking loop produces deleteri-
ous effects on system performance. As opposed to the
problem considered in Ref. 1, this paper has treated the
case where this error may vary over the duration of the
received symbol. Useful design trends and results were
established for the situation where the error ¢ (t) may be
considered gaussian, For most practical applications thi.
assumption is valid.
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E. Propagation Studies: Absolute Time by Pulsar,
G. A. Morris, Jr.

1. Introduction

Rapidly pulsating radio stars were reported early this
year by the radio-astronomy group ot Cambridge (Ref, 1).
Further investigation confirms that thé periods of these
sources are quite regular, and several sources have been
identified. The regular pulsations of these sources sug-
gest they might be useful as an inexpensive means of
determining absolute time among the Deep Space Net-
work staticns.

In order to be useful in determining absolute time these
sources must have excellent long- and short-term stability,
To Le useful from an operational standpoint it must be
possible to predict the arrival time of a pulse and also to
make an accurate measurement of the arrival time in a
short period of observation,

190

To obtain information about the usefulness ot these
sources an ob rervational progiam was started m early
August at S-band. The object of this program is to exam-
ine all pulsars as they are discovered to determine their
usefulness as an absolute time standard. It is preferable
to use sources with a large stable flux density in order to
increase the signal-to-noise ratio and therefore reduce the
time required to make an estimate of pulse arrival time.
The pul. e shape should be stable and, if possible, should
have a structure that can be used to estimate arrival time
readily. As of November 1, four sources have been found
which satisfy the above criteria. Time versus average flux
plots of these sources are shown in Fig, 14. Although indi-
vidual pulses are generally too weak to be observed,
averages of many pulses are easily detectable. Regular
weekly observations of these sources will be made for a
period of at least 1 yr. The difference between predicted
and measured arrival times will be minimized in the least-
squares sense, using differential correction techniques to
confirm the sourc~’s celestial position and pulse period.
Right ascension, declination, distance, period, and galactic
rotation are among the parameters to be estimated by the
least-squares fit. This information is required before accu-
rate predictions of pulse arrival time can be made. Fur-
ther, this information is valuable in determining the
inherent stability of period and celestial position for pos-
sible optical identification,

2, System Description

A block diagram of the system is shown in Fig. 15. The
only special equipment required is the pulsar timer, which
supplies one interrupt to the computcr per pulsar period
and 5000 sampling pulses to the analog-to-digital con-
verter every period, The 1-pulse/s signal from the cesium
clock is used to start the timer on an exact second so that
arrival time measurements may be made. The synthesizer
used to detennine the period is driven from the cesium
clock 1-MHz output so that stability of period is obtained.
Data is obtained by sampling the signal 5000 times per
period and integrating the data for 500 periods. Data is
normally taken for 1 h, Then the syuthesizer is changed
to a new frequency to correct for variations in the appar-
ent period of the pulsar caused by the orbital and rota-
tional motions of the earth, Data is recorded on magnetic
tape, after being integrated over 500 pulses, for later
analysis in the least-squares fit.

3. Variance~Covariance Analysis

A variance-covariance analysis was performed to deter-
mine how accurately several parameters could be mea-
sured for the source CP0950, assuming arrival time
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measurements accurate to 100 us. Present data indicates A simplified earth ocbit was used, and the source was as-
this is a reasonable estimate of accuracy. The standard  sumed to have no proper motion, no radial acceleration,
deviations for position and period are shown in Table 1.  and a constant period. The position obtained by this
technique, after 1 yr, should be of great benefit in making
an optical identification. The standard deviation of the
period ranks with the cesium standard as to stability.

Table 1. Variance~covariance analysis basad on arrival
time measurement accurate to 100 ;s for CPO950

Parameter Standard deviation
Period 3.07 X 107" sec Reference
ight it 0.00293
Wi " ascention ore se¢ 1. Hewish, A,, et al., “Ohservation of a Rapidly Pulsating Radio ‘
. Declination 0.00763 arc sec Source,” Nature, Vol, 217, pp. 709-713, 1968, ‘.
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F. Communications Systems Development: Effects
of Phase-Locked Loop Dynamics on

Phase-Coherent Communicetions,
I.F. Blake® and W. C. Lindsey"

1. Introduction

In a rccent paper (Ref. 1) one ot the authors analyzed
the performance of a phase-coherent receiver preceded
by a bandpass limiter, Two expressions for the error
probability were given for the cases; (1) where the phase
error varies rapidly over the symbol interval, and (2) where
the phase error remains essentially constant over the sym-
bol interval. The parameter which essentially character-
izes how fast the phase crror varies relative o the symbol
time T is the ratio of the system data rate ‘£ to the band-
width W, of the loop at the design point; e, § = R/W .
In practice, the question naturally arises as for what
region of § will case (2) analysis be valid. It is also of
interest to understand how the error rate changes as the
paramcter & varies over all regions of the phase-error
variations. Consequently, the purpose of this article is to
present an analysis which deals with the general case
of the phase-error variation for all values of §. The results
arc particularly useful in the design of medium-rate
phase-coherent communication systems used for space
communication, e.g., Mariner- and Pioneer-type telecom-
munications systems.

2. System Model

If the received signal is tracked by means of a phase-
locked loop, the output of the phase detector can be
written as

y () = % () cos ¢ (§) +n (1) ()

where ¢ (t) is the time-varying phase error in the loop,
and n(t) is white gaussian noise of two-sided spectral
density N./2 watts/sec (Ref. 1), The signals

x: (1), k=12
are constant over the bit interva! of duration T sec:

n(f) = +A

*Resident Research Associate, NASA-NRC.

°Consultant, Electrical Engineering Dept., University of Southem
Californiu.
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The correlator output, on which the decision as to
whether x, () or x,(¢) was sent is based, can be shown
to be given by (Ref. 1)

qwjﬁnwmww+uwnnm_mth )

If ¢r is negative, we decizde that x, (£) was sent, and if
positive, x, (¢). It is assumed that the signal-to-noise ratio
in the tracking loop is such that the phase eiror process

¢ (t) is gaussian with correlation function

1 Vr
R¢(T)=p—,<‘xi7[H7|7|J:vzcxpf~7|7|] 3

This assumption is justified in the case of a first-order
loop with no b :idpass limiter preceding it. For the case
under consideration here, it is an approximating assump-
tion essential for the analysis. The agrecement of known
experimental and theoretical results tend to support
its use.

The parameter y in Eq. (3) is defined later in terms
of loop and filter parameters in Eq. /11). When the loup
is preceded by a band-pass limiter, the quantity o} in
Eq. (8) is well approximated in the region of interest
in practice by (Ref. 1)

Sl
Il
=

_ 3z
T (1 +2/p)

o 140353y
~0.862 + 0.690 zy

Yoy Yol
(Yol exp (— _‘—>[ L 5

lL —
Yexp (—— %l')[lo (%

+1, (%'4 ]
P.o

NeBrg )

Y, =
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where P. is the carrier power, by, and b, are loop and
IF amplifier (in the double heterodyne receiver) band-
widths (wy, = 2by, w, = 2b;) (Ref. 1). The subscript 0
refers to the values of the loop parameters at the design
point, which is defined as z, = Y., = constant. The pa-
rameter p. is the ratio of the limiter suppression factor at
the design point to its value at any other point and

I (x), k=12

are modified Bessel functions of order k. The parameter
zy is the signal-to-noise ratio at the output of the receiver
IF amplifier.

3. Error Probability Calculations

If the parameter z is sufficiently large, the cosine term
in Eq. (1) can be replaced by the approximation

= ®)

cosh(f) =1 — 5

It turns out that in practice this approximation is suffi-
ciently accurate in the region of interest. The decision
variable becomes

1 T T
a=pT—50 [ #Oa—24["a0a @
where

Br = 2 () [x2 (£) — 21 (8)]
= —24?, k=1
= +2A2, k=2 )

Define the new decision variable

_ (g — BT)
SAT

=.;1.fT¢2(t)dt+12A frn(t)dt )
o '2_ﬂkT 0

=

where now it is decided that x, (#) was sent if z; > 2,
and x, (t), otherwise. The second term on the right-hand
side of Eq. (8) is a gaussian random variable with mean
zero and variance

e

2
~=

L 2N, a2 .
“TR®T "R \
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The probability density of the first integral in Eq. (8) is
very difficult to determine. However, a useful approxi-
mation to it has been found (Ref. 2):

g(x) =ps (g_:)‘ et (prx)

B L ~
Xexp[ 9 p,,:\-i-PLx , x>0

(10)
where
T
BL= l2‘
_ _l_ 1+ 19
) ( L+, (11)

where y is the parameter appearing in the exponent of
the correlation function in Eq. (3), 7, is a loop parameter,
¢ is as defined in Eq. (4), and

R R

§ = =
Wio 2byo

(12)

The density in Eq. (10) is a unimodal function which is
zero at the origin and a maximum at

179 . 47% 3
e 2[ Bt Pi:l 2Bupt 13)

The approximation to the true density becomes very close
for B, > 5. As Br—> 0, the maximum tends to x = 1/p,
and the function tends to a delta function at this point.
As B;— 0, g(x) tends to a delta function at the origin.
Similarly, for fixed B, as p.— o, the function tends to
a delta function at the origin, Notice that in order to
make the approximation to the cosine valid, p; should
be at least 3 or larger.

If it is assumed that the two integrals in Eq. (8) are
independent random variables (an approximation which
can be partially justified on physical grounds for the
case of interest here), then the probability density of
the random variable z; can be written as

pe) = [ Graren[- EL lewas g
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Assuming x, (¢) was sent, the probability of error

P, = prob [z > 2]

:[w f@%@”‘p [* '\zz_(,zx)L]g(x) d dz

(15)
Interchanging the integration yields
0 2 — A
P =/ erfc( - “)g(x) d (16)
V]
where erfc(-) is the complementary error function
0 1 .
erfe (y) =L Wexp(—,w/z) du (17)

Notice that as p,— 0, Py —> erfc (2R)% which coincides
with the result obtained in Egs. (24) and (38) of Ref. 1
under this condition.

From the results of Ref. 2 it appears that the density
function of Eq. (10) becomes a poor approximation as 8,
decreases much below unity. Since

_l 1+4ro/n
Br="75 1+

this corresponds to § being greater than

(1 + ro/#))
( 141
The parameter p is a function of x(=z/2) and other
parameters. To find the region of validity of the curves,
consider first Fig. 16, where R =4.8. For x =4, n =05
and the curve is valid for 8 < 2. For x = 300, x =20.078
and the curve is valid for § < 9. Drawing a straight line

between these points gives a good approximation to the
region of validity. The same limits hold for Fig. 17 also.

(18)

4. Results and Conclusions

That component of the error probability, assuming
rhases reduced modulo 2z, has been evaluated based
upon the approximation that

cos(t) =1— ﬁz(—t)—

This does not imply the assumption that ¢ (¢) is small,
ie., linear PLL theory holds. If linear PLL theory were

194

ERROR PROBABILITY

ERROR PROBASBILITY

—
o

-

(=]

]

o Ne
o ow®

o'-%
Sy

~

I
-

It
&l
8 —_—

DATA RATE, bits/s

. 16. Error probability versus data rate (phase
error varies over hit interval), R = 4.8

T T TT 1 T T

=

- o
OO

~

x

oo
loc'wrv-o
- o>
1

13

o0 -

o'
- 4
ry
=]
S

o

N
z
(=
C
(=
!

%
7

&

I T T i 1

4

6 10° 2 4 6 10

DATA RATE, bits/s

Fig. 17. Error probability versus data rate (phase
error varies over hit interval), R = 9.1

JPL SPACE PROGRAMS SUMMARY 37-54, VOL, Il




invoked cos ¢ (#) would be replaced by cos ¢ (£) = 1 and
sin ¢ (t) >~ ¢ (¢). On the other hand, in order to describe
the statistics of

17 l
Y:f[ cos ¢ () dt
1T
g1—~—27[: (/)(t)(lf

it has been necessary assume that ¢ (f) is gaussian. In
principle, however, this assumption is not at all restric-
tive since the variance of the actual ¢ process at work
in the loop can be substituted into the probability distri-
bution fy (y). Thus the nonlinear effects of the loop are
taken into account.

Figures 16 and 17 illustrate the performance of a binary
phase-shift-keyed communication system when ¢ (¢) varies
over the symbol interval. The signal-to-noise ratio
R = ST,/N, has been set such that the error probability
of the system would be 10-* (Fig. 16) and 10-> (Fig. 17)
in a perfectly synchronized system. For values of 4=8§=5
the results check, for all practical purposes, with those
given previously (Ref. 1) where it is assumed that cos ¢
is essentially constant over the symbol interval, For
8 < 4 the results presented here begin to deviate appre-
ciably from those where cos ¢ is assumed constant; hence,
the model introduced here will be useful in designing
and testing of phase-coherent systems which operate with
8 < 4, the low-rate end of the region of 3.
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G. Communications Systems Development:
Efficiency of Noisy Reference Detection,
R. C. Tausworthe

1. Introduction

Lindsey (Ref. 1) has published results which, for a
given modulation index, relate the observed signal-to-
noise ratios (SNR) to equivalent signal losses caused by
the noisy demodulation process. Recent measurements of
the performance of the 8%-bits/s Mariner Mars 1969
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engineering telemetry instituted a reevaluation of these
analyses. The following report is a tabulation of the
method for determining the demodulation efficiency as =
function of loop phase error. Performance is then related
to these efficiencies through the modulation index. This
method was chosen because of the flexibility it affords
when many indices, bandwidths, ete,, are being con-
sidered.

2, Efficiency Equations

The output of a coherent amplitude detector is a process
of the form (Fig. 18}

z(t) = PAm(t) g(¢) +n(t) (1)

in which n () is wide-band noise normalized to have the
swme two-sided spectral density N, = N, /2, as the input
noise; P = A? is the rms detected sideband power; g(¢)
is the detector phase characteristic, normalized so that
g(0) =1; and m(f) is the detected modulation process,
normalized so that E (m?(t)) = 1. The modulation wave-
form we shall assume is one of M messages {my (t)}, for
0=t<T.

COHERENT
AMPLITUDE  lell——— OUTPUT, z(t)
DETECTOR

INPUT, x(t)

REFERENCE, v{t)

PHASE-
> LOCKED
Loor

Fig. 18. Coherent detection by loop-derived
reference

The process z(t) is the input to a set of correlators,
whose outputs at the end of a T-sec message are

w=3 [ mOmOgGOEFND @

N(T) then is a gaussian random variable with variance

N,
ot =7 (3

We shall also assume that the phase-error process is
derived from a phase-locked loop tracking the carrier
or subcarrier. The loop bandwidth will be denoted w,
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and the phase-error density p($). The integral term of
Eq. (2) can be written as a mean value plus a variational
term

wy,=A(rmp+w) + N (T) (4)

in terms of the normalized cross-correlation r; between
the incoming message m(t) and the kth stored one,
my: (t), where p = E [g(¢)], the vy are random variables
which depend on the value of k, and v=(v;, * * * , vy)
possesses some distribution p(v). The actual overall
probability of error is the average conditional error prob-
ability

F” :J‘Pl’ [el’l'Ol'Ivl, o :Vm) d"l st de

(5)

* ,Vm]p(vl; t

The difficulty in specifying the characteristics of
p(vi, *  * ,va) lead to approximations for Eq. (5).

First, if the loop response is considerably more rapid
than the integration time T (i.e,, § = 2/w, T << 1) then
the correlator output tends to the average

Vi~ 0 (6)

in which case the outputs appear all to have an equiva-
lent constant factor E [g(¢)] multiplying the signal am-
plitude A. Performance is then the same as it would be
if the signal power were reduced by the factor E2 [g (¢)].
The error rate will fit the usual maximum likelihood
theory, giving rise to a probability of error as a function
of the matched filter SNR parameter p,,:

=G B EW] =RELe@] ()

in which R = PT/N, is the undegraded value of py/. In
this case, it is easy to see that the detector efficiency 5
is merely

70 = E*[g(¢)] = w* (8)

A second approximation can be made when the loop
is very sluggish with respect to the message (i..,
8 =2/w,T >>1). Then, over the interval (0,T), the
phase error is nearly constant (but randomly distributed
according to p(¢)). In this case, the correlator outputs
are very nearly

wy, = Ar.g(¢) + N(T) ©)
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so that the averaged error probability yields the overall
error rate

Py (R%) = fPy (R g(¢)]$) p ($) dob (10)

\

The degradation is then clearly

7= (P P (RO (1)

Because of the convexity of the function Pr[E|v], it fol-
lows that the actual efficiency is bounded by Egs. (8)
and (11):

7Iooé’llﬁé'qn (12)

3. Errer Probability

Since Eq. (11) requires it, let us consider the error
probability function. For no coding and antipodal binary
signals, the error rate is

P, = %—erfc (R)% (13)

For orthogonal, equi-energy signals, the error rate is

Py = (2—710@ / w exp (—y*/2)

-0

1 v+(2R) % AM-1
X [?27)17;/ exp (—v%/2) dv] dy

-0

- %
o M1 erfc (E) ’ (14)

2 2

As a function of R, biorthogonal codes behave much the
same (Ref, 2) as Eq. (14) indicates. Thus, for the three
cases {no coding, orthogonal, biorthogonal) we have

erfc (AR,

Py (RY) = P (RY) ity

(15)

for any values R, and R, of R. The coeficient A relates
to the coding:

1, uncoded

O] -

, coded (orthogonal/biorthogonal) (16)
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We can set R% = R% and R = R%g(¢), above, to eval-
uate Eq. (10):

o Py(RY) [T \
Py (R%) = erfo (\RYE | erfc (AR)% g (4)) p (¢) do
(17)

But the same error rate would occur if the value of R
were Re; and no degradation were allowed:

Py (R’/‘z)

?E (Rl,é) = PE (R‘/z) = m

eq

erfc (AR, )% (18)

It is then clear that

Ren = % {erfc—l [/_: erfe (AR)% g (4)) p ($) d¢:|}2
(19)

and, correspondingly, that

o = Xlﬁ {erfc_l[ [ :el-fc((m)‘/zg(qS))p(wd¢]}2
(20)

Thus, it remains only to evaluate Eqs. (8) and (20) for
given g(¢) and p(¢) to obtain limits on 7s.

4. Carrier-Extraction Degradation

For the carrier-extraction process the detector char-
acteristic is

g(4) = cos ¢ (21)

and the phase-error distribution, based on the first-order
loop theory, is approximately (Ref. 3)

p() = 2LLet) )

in terms of the loop equivalent SNR (Ref. 4)

p= Nowl,l‘

(23)

JPL SPACE PROGRAMS SUMMARY 37-54, VOL. Ili

Based on this p, a certain loop phase error o is present
in the loop:

2~ T 4 N (—l)"I"(p)
=y w)Z

~— asp—>rom (24)

It also follows that the degradation for § << 1 is

The value for 7., has been obtained by numerical integra-
tion, and appears along with the 5, of Eq. (25) in Fig. 19,
cross-plotted as a function of the loop error, It may be
noted that when o® is small, the two bounds converge
approximately to the gaussian-phase-error result

1
L= o~ o~ 1 = exp(—o) (26)

But as degradation becomes an appreciable percent, the
two separate and depend not only on ¢ but on AR as
well. Because of the increasing steepness of Py with AR,
the degradation for § >> 1 becomes more drastic as
AR increases. The degradation for 8§ << 1 is, however,
independent of AR.

5. Subcarrier-Loop Degradation

Assuming that the subcarrier is a square wave, the
detector characteristic becomes triangular:

3

for | <3

g@)=1-2g], @)

The approximate loop error density (based on a first-order
loop) is again related (SPS 37-31, Vol. IV, pp. 311-325)
to the loop equivalent SNR by

%exp[_ "';452], for |¢|=n/2
p(¢) =
1 1-—- 2(¢ — 7 9 3
G oxp —p( "T—)]’ T2
3/2 % 14
o=gmiei(3) +ern(§)’} )

b A
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Fig. 19. Loop-derived reference degradation bounds for carrier tracking loop

where the imaginary error function

h(x) =-7%Z Cerd
0

0

2 xz
=% ) @ T @)

n=0

The phase-exror variance is then

(@) el ()

and the low-rate efficiency can be straightforwardly
obtained as
\"‘3]

(O [
<=6

S R a

(31)

o[

-

I
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Again, the values for 7., have been obtained by numerical
integration, and the two different behaviors plotted in
Fig. 20 for comparison. As was evident in the previous
case as well, the two degradations at low «* behave like

3/2 2 3/2
N = [1 —_ <E> 0:| ~1-2 <g> o (32)
kin ™
as would be predicted by a gaussian ¢-process theory.

6. Interpolation Between 7, and 7,

For a given normalized code-word rate § = 2/w,T, the
actual efficiency 7s lies between 7, and 7.. To compute
ns exactly is an extremely difficult task, since the statistics
of ¢; required by Eq. (4) are unknown. What we shall
develop here is an interpolation formula for s rather
than a direct evaluation of the efficiency. One very good
approximation of the error probability in the vicinity of
R, is obtained by a Taylor expansion of In [Pr (R%)]:

Py (RY%) = Py (R¥) e*tFo-Fv (33)
for two comparative values R, and R, of R = PT/N,, for

both no-coding and orthogonal/biorthogonal coding,
according to the value of A. We take R, to be the value

R, = Rp?* = RE* [g(¢)] (34)
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corresponding to »., and take R, to be the apparent SNR
corresponding to the correct word in Eq. (4):

R, =R (u+ »)? (35)

Then we can equate the observed error probability as
having occurred with an equivalent value of R = R,
with no reference phase error:

Ps (RY) = f Py (RE]) p (v) do

=Pg (R%) / exp{ — AR,

(@) @por

The form of P; displayed in Eq. (33) then provides

A(R,—R,)=In f exp {— AR, [(;)2 + 2(%)]} p(v)dv
i =i ffi-m () ()]
EGY QT+ Jo
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=Tn {1 — AR, ("—”)2 + 2xzﬁg<ﬂ>2 4o
* n /(

- ("7) [2A2R§ — ARo] + - - - (37)

When o? is small, the first term will dominate the be-
havior of Eq. (37). Hence, as a result, we see that

D= <—W—)2 =a (38)

Mo ™ New Ov, w0

in which o ., is the variance of v as § — «. Hence, the
interpolation formula we seek is

76 = (1 — @) 9o + ane, (39)

and is valid whenever Eq. (37) is dominated by its first
term.

The parameter a defined by Eq. (38) involves only the
expectation of the square of

v=7) e -Egema @




which is given straightforwardly by (Ref. 5)
2/6 Sx
=8 [ (1=5) (o (7100 = By ()] d
0 2
(41)

The asymptotic values of of at very small and very large §
then verify our previous intuitive claim:

5 f (Rocor (t/0) — Bogy (o)1, 2580

oy i
o2, asd—> o0
(42)

It thus remains only to evaluate o} at a particular value
of 8. The ratio of the two variances ¢f and o2 then give
the parameter a. But because the loop is nonlinear,
Ry4) () is not known, although there are several approxi-
mations available for calculation of Ry (r). We can model
¢ () as a gaussian process having the same variance and
bandwidth as the ¢-process and thereby evaluate the
autocorrelation of g(¢) in terms of that of ¢ (t) by Price’s
Theorem (Ref. 6). For example, if g(¢) = cos ¢, then

Rcos'ﬁ (T) — Reos ] (00) = 2e-9¢ sinh? (’;— Rq} (r))

while, if g(¢) is the triangular function present in square-
wave subcarrier extraction, then

Ricig) (1) = Ruriegy (0) =

(%) [Rgs () sinct (Rg () sin* (%%)
+ (o4 — B3 ()% — gg] (44)

Further, we can model the correlation function of ¢ by
the simple first-order loop result

Ry (r) = ofexp (—2ws|7]) (45)
and thereby evaluate the parameter a.
At best, the cvaluation of @ requires numerical inte-

gration. of ¢} is small in the carrier 1~op case, however,
the approximation in Eq. (43) can be used to give

2/6 ’
a (carrier loop) = 8/ ! (1 - %.) e-1% dx

- [1 -t _ e-w)] (46)

and is independent of ¢3. This « is plotted in Fig. 21.

1 ., ) The numerically integrated, more exact value at ¢3 =1
~gq¢ " R} (v) (43) is almost indistinguishable from Eq. (46).
1.0
%/
0.8 i
7
,, Pz
E 0.6 / SUBCARRIER LOOP
% CARRIER-TONE y/
z /
9]
5 0.4 /V
0.2
/ %
Lo
/
0
107! 2 a6 10° 2 6 10! 2 4 6 10?

4
3 = 2/wLT

Fig. 21. Interpolation parameter a for sine wave (carrier tone) and square wave (subcarrier tone)
loops as a function of the normalized data word rate
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In the triangular subcarrier case, ¢ reduces to the
integral

4/5 ‘
a (subcarrier) = 5 / (1 - %) [ sin* (e™)

T— 2

+ (1 — e2)% — 1] dx (47)

which is also independent of ¢3. The variation of a with
§ is depicted also in Fig. 21. The approximate expression

0.09135 § + &*
1+ 3371868 + 8

(48)

a (subcarrier loop) =
provides a simple formula for amazingly accurate results.

7. Conclusions

The efficiency of a coherent amplitude detector lies
somewhere between limits set by two extreme theories,
depending on the value of § = 2/w,T. In the discussion
we have considered (by assumption of the form p(¢)
only) the effects of wide-band input noise. However, if
there were other processes causing phase error, such as
Joop voltage-controlled oscillator noise, detection insta-
bilities, etc., they can be considered as an equivalent
phase-error term to be included in p(¢).

As long as the loop SNR, p, is greater than 10, p (¢) is
very nearly gaussian, and a normal density can be sub-
stituted for p(¢), with the other instabilities reflected in
the value of o2
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H. Information Processing: Limiters in Pluse-
Locked Loops: A Correction to Previous
Theory, R. C. Tausworthe

1, Introduction

In 1953 Davenport (Ref. 1) published a now-classic
paper which showed that at very large values, the asymp-
totic output signal-to-noise ratio (SNR) of a limiter is
twice its input SNR. Because of this, it was supposed
that the same improvement ultimately should be evident
in the performance of a phase-locked loop tracking the
limiter output. In fact, the author (Ref. 2) used this result
(erroneously, but subtly so) to derive a limiter perform-
ance factor T. Recently, however, G. D. Forney (Ref. 3)
has presented a simple argument to show that the asymp-
totic factor of 2 is not realized in loop performance,
although it is indeed present in output SNR. In this
article, the author extends the asymptotic result to rede-
rive the equivalent limiter performance factor.

2. Loop Theory and Noise Components

We shall assume (Fig. 22) that a loop has incident a
sinusoid in wide-band noise, and we shall express this
process in the form (Ref. 4)

A

Y (t) = a2%sin (wot + 0) + ng (£) 2%sin (et + 0)

A

+ ny (t) 2% cos (wet -+ 6) ) (1)

vCo

vit) = KV2 cos (wof + ?)

Fig. 22. The bandpa.s limiter phase-locked loop
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where n;{f) and n, () are independent wide-band in-
phase and quadraturc components [with respect to the
voltage-contiolled oscillator (VCO) output] of the input
noise process, « is the rms signal amplitude, and Tis the
loop estimate of the input phase process 6. The VCO
output we shall take to be of the form

N

v (t) = K 2% cos (wot -+ §) 2)
so that the phase detector output is
z(t) = <y(t)v(t) > = K[asin¢ + n, (t)] (3)

A
with ¢ =  — 0, the loop phase error, The terms enclosed
in “< >” refer to the “low-pass part of” the expression.

The important point in Eq. (3) is that the only noise
having any effect on loop performance is the noise in
phase with the VCO. The resulting linear theoretical
phase error is then

R — 4)

where S, ., (jw) is the spectral density of the process n, (t)
and w;, is the loop bandwidth (Ref. 2).

In previous analyses, it has always been assumed that
the input noise process has components of equal spectral
density, each equal to that of the input process. However,
the noise components at the limiter output do not have
equal spectra; this is the point that was overlocked in
extending Eq. (4) to the limiter-loop case, Hence, to cor-
rect the result published in Ref. 2, the value of S, (0)

‘ig) merely has to be reevaluatec.

3. Limiter Output Noise
Let the input to an ideal bandpass limiter be

x(t) = A2%sin (0ot + ) + n, (A) 2%sin (gt -+ 0)
+ n. (t) 2% cos (wot + 6) (5)
where A is the rms signal amplitude, and n, (t) and n, (£)
are independent, zero mean, quadrature gaussian noise

processes with respect to the input signal, having identical
variances and spectra

o, =di, = a}/2

6
Noe = Nos = N,
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It follows directly that the fundamental-zone limiter out-
put is of the form

y(t) = —2“:—5 {(W) 2% sin (et + 0)
+ (%ég—) 2% cos (wat + 0)}

92,

{{a + ny ()] 2%sin (wot + 0)
+ n, (t) 2% cos (vat + 0)} (M

where L is the limiter clipping level, and A(f) is the
process

A(t) = [(A+n () +ni(t3" (8)
For convenience, we shall normalize L = » 2¥* to give
unity output power in the fundamental harinonic zone.

Previous calculations (Ref. 1 and SPS 37-44, Vol, 1V,
pp. 303-307) have shown that the mean signal level is

a? = % pu exp (—pu) [Lo (pu/2) + Ly (pu/2)]*

____0.7854py + 0.4768pf,
™1+ 1.0240p, + 0.4768p%

©)

in terms of the input SNR, p; = A?/N,wy, the input
process bandwidth t, and the modified Bessel functions
of the first kind, I, (x).

The second term of Eq. (7) is noise whose variance is

3=E {%ﬁ%} (10)

This expectation involves the evaluation of a somewhat
tedious, but straightforward, double integral. The result
is the simple expression

of = 5,1,— [1~ exp (~pu)] (1)

The noise component #, (t) appearing in Eq. (7) is uncor-
related with n, (¢); so its variance is

oi=1—a?— o} (12)

e e e

4. Limiter Noise in-Phase With the VCO

The reader will note that the expressions for the loop
input y (¢) given in Egs. (1) and (7) are slightly different.
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When multiplied by the VCO output in Eq. (2), the
relevant loop noise n; {t) is

n; (t) = n, () sin ¢ -+ 1. () cos ¢ (13)
whosc variance is then

of = o} + (o} — o3) E (sin® ¢) (14)

5. Phase-Locked Loop Variance

The variance in Eq. (4) can now be evaluated by noting
that, according to the definition of the in-phasc noise
bandwidth w;,

1 [+ dw o}

S"l"l (0) = E}‘ ) Sn,nl (iw) ﬁ = E (15)
and therefore
. ofty,
7 7 ot
_ Now,, {wupy wiof )
- Az (ll);pz > t; (1 —_ az) (16}

The ratio wipi/pytey is the Springett factor (SPS 37-36,
Vol. IV, pp. 241-244), previously defined as 1,1, which
relates output and input spectral densities, The only
vnknown in Eq. (16) is the ratio w,/1v;, Asymptotically,
as py—> o, all the output noise comes from n. (), so
wy = wy/2 (the limiter output bandwidth w, differs by
a factor of 2 from that of the baseband process); and as
pi— 0, both noises n, (t) and n, (¢) have the same spectra,
S0 again w; = w,;/2.

Insertion of the value for ¢ and the linear-theoretical
assumption sin® ¢ = ¢* yield

o3 = N;"f" T. (17)

in which T is the true limiter performance factor
(wnpn)[l — exp (—py) (}ﬂ)
wip (1 — o®) py tw;

1+ ( 2w, )(wnml)[l —exp(—pu) 1](&)
Wypy wip; (1 - a®) 2pp w;

T=

(18)
In limiting cases, T behaves as follows:
1
32
P~T75= 1, pu very large (19)
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as predicted by the Forney result, and

r~———l'ﬁ~—<1.l6,

1 403352

Wy

pu very small (20)

The conclusion reached is that the effect of a limiter on
loop performance is less than 16% (0.66 dB) in effective
input SNR! Under the assamption that wy, > 10w, the
dependence of T on w,, /1w, disappears for practical pur-
poses (within 0.1 dB), A rational function approximation
emulating the cross-over behavior of Kq. (18) near p = 0.5
(Fig. 23), is

o 1tpn
With this approximation, the lincar-theoretical limiter
performance follows directly.

6. Nonlinear Loop Theory

The only alteration that must be made to make the
derivation of T general enough for the linear-spectral loop
theory (Ref. 2, Chapt. 9) is the estimation of E (sin®¢) in
Eq. (14) by a more accurate value. But the only change
which would result in T would be a factor

E[sin*®] (1 — exp(—2d3))
E[e?] — 20%

=1 (22)

(under thic assumptions of Ref. 2, Chapt. 9) inserted into
the second denominator term of Eq. (18), which we have
agreed, for wy, > 101w, is negligible anyway. Hence,
the nonlinear theory is also essentially unaltered from the
previously published results, except for the new T that
must be used.
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XXI. Communications Elements Research
TELECOMMUNICATIONS DIVISION

A. System Studies for 90-GHz Space
Communications Systems: Atmospheric Effects
on Millineter Wave Propagation, 7. Sato

The 60-in. radio telescope used for radio astronomy
experiments (SPS 37-49, Vol. III, pp. 329-338) is being
converted into a radio sextant. An optical tracker auto-
matically tracks the sun in both hour angle and declina-
tion by generating ~rror signals for the antenna servo. The
error-sensing elements attached to the telescope consist
of two photoconducting cells per channel. When the sun
is centered, both cells are illuminated equally and pro-
duce equal resistances; no error signal is then produced.
If the sun’s image shifts, the cells are illuminated un-
equally, thereby producing an error signal. The error
signal to the digital processor generates pulses that are
fed to the stepping motor in a direction to remove the
angular error in pointing,

The 90-GHz nodding subdish radiometer mounted on
the 60-in. radio telescope receives emissions from the sun.
The slant path through the atmosphere changes with the
position of the sun. The temperature of the antenna when
pointed at the sun is given by

Ty ($) = T, 10-%/105ecy + T, ()
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where T, is the antenna temperature with no intervening
atmosphere, g, is the zenith attenuation in decibels, ¢ is
the zenith angle, and T (¢) is the sky temperature. Use of
the nodding subdish radiometer balances out the T, (¢)
component. The expression for the received temperature
is then given by

)

log T, ($) = — m +log T,

The absolute zenith attenuation can then be deter-
mined from measurements of the received power and the
zenith angle without knowledge of the solar temperature
or antenna gain. Certain weather conditions may invali-
date the secant law giving an average value for the zenith
attenuation.

B. Spacecraft Antenna Research: RF Breakdown
Characteristics of S-Band Sterilizable
High-Impact Antennas, K. Woo

The power-handling capabilities of the S-band steri-
lizable high-impact antennas (coaxial cavity,! cupped

ISPS 37-40, Vol. 1V: discussion on pp. 201-208; photograph in
Fig. 5, p. 202,
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turn dle,? square cup,® and circular cup?) have been in-
vestigated «i very low pressures, The antennas were each
tested in the vacuum chamber of the JPL voltage break-
down facility with dvy air, 100% carbon dioxide, and a
mixture of 50% carben dioxide and 50% argon.

The ionization breakdown power level at 2298 MHz of
each antenna was obtained as a function of pressure near
and at the point where the breakdown power is mini-
mum, such as shown in Fig. 1 (obtained for the coaxial
cavity radiator). The minimum ionization breakdown
power levels at 2208 MHz for all the antennas were found
within the pressure range of 1.5 to 2.5 torr, The multi-
pacting breakdown power levels at 2298 MHz of all the
antennas were tested around 5 X 10-° torr., The multi-
pacting, breakdown and minimum ionization breakdown
power levels for all the antennas are summarized in
Table 1.

Each value given in Table 1 represents the power that
each antenna actually received, i.e., the power fed into
the antenna minus the power reflected back due to mis-
match. The values to which “>” signs are attached repre-
sent the peak levels to which those antennas were tested
due to power limitations imposed by either the output of
the RF generator or the feeding hybrid (if used) or by
other difficulties. :

2SPS.37-42, Vol. IV: discussion on pp. 180, 181; photograph in
Fig. 1, p. 181.

8PS 37-49 and -53, Vol. III: discussion on pp. 345-347 (37-49)
and pp. 164-166 (37-53); photographs in Figs. 32, p. 346 (37-49)
and 5, p. 165 (37-53).

‘SPS 37-47, Vol, III: discussion on pp. 240-242; photograph in
Fig. 4, p. 240 and Fig. 5, p. 241.

[10] I A N ’T’ —N_‘

f = 2298 MHz

o SR N R
.

z ! /
g 70—t ‘
3 \ //
0 \ 7
~— .47 100% CARBON DIOXIDE
60 —VW —
50 kS —=

../
91" 50% CAKBON DIOXIDE,
50% ARGON

40 ]
1 2 3 4 5

PRESSURE, torr

f=4

Fig. 1. lonization breakdown characteristic of
coaxial cavity radiator

The power levels for the square cup and circular cup ra-
diators represent only momentary power; i.e., the power
was shut off immediately after it was applied to those an-
tennas. When a steady power was applied, those antennas
experienced a thermal breakdown (hence, degradation of
electrical performance) at relatively low power ievels,
The thermal breakdown was in the form of charring of the
foam in the vicinity of the feed probe due to the accumu-
lation of heat resulting from the poor thermal conduc-
tivity of the foam. Figure 2 shows the charred area
around the feed of the square cup radiator after removal
of the foam. Test results at 2.0 torr showed that a square
cup radiator potted with Stafoam AA630 would sustain
at least 3 h of continuous operation at the 50-W level, but
would suffer thermal breakdown (voltage standing-wave

Table 1. lonizatich and multipacting break down power levels and locations for the
S-hand sterilizable high-impact antennas®

lonization breakdown Multipacting breakdown
Antenna Minimum hreakdown power, W, Breakdown power, W, for
for indicated atmosphere Location of breakdown indicated atmosphere Location of breakdown
A B c A B c
Coaxial cavity 79 62 47 Around the probes > 130 > 130 >130 None observed
Cupped turnstile A 23 17 At balun split > 130 > 130 > 130 None observed
Square cup® > 560 > 560 > 560 None observed > 560 > 560 > 560 None observed
Circular cup® > 560 > 560 > 560 None observed > 560 > 560 > 560 None observed

aAtmosphere A: dry air,
Atmosphere 8: 100% carbon dioxide,
Atmesphere C: 50% carbon dioxide, 50% argon.

bPotted with Stafoam AA630 or Eccofoam PT,
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Fig. 2. Square cup radiator after thermal breakdown

ratio changed from 1.8 to 4.6) after 5 min of operation at
the 100-W level. The same antenna potted with Eccofoam
PT would sustain at least 3 h of continuous operation at
the 40-W level.

On the basis of the test results, it can be seen that, for
high-power operation, the ionization breakdown is the
problem area for the coaxial cavity and cupped turnstile
antennas, and the thermal breakdown is the problem area
for the square cup and circular cup antennas, To improve
the power-handling capabilities of the existing antennas,
the following modifications are recommended:

Antenna Recommendation
Coaxial cavity Widen cavity and enclose feed
probes with high-thermal-
conductivity dielectric
Cupped turnstile Redesign balun

Improve thermal conductivity
and reduce loss of potting
dielectric

Square cup

Circular cup
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C. Radiation From a Horizontal Electric Dipole
Antenna Located in a Cylindrically
Stratified Plasma, R. Woo

e

1. Introduction

In SPS 3747, Vol. 111, pp. 247-257, the wake of a Mars
entry capsule was represented by a cylindrical plasma
column and the problem of a horizontal electric dipole
located in the wake was formulated. In SPS 37-50, Vol. 111,
pp. 312-316, the representation of the wake was improved
by surrounding the plasma column with a plasma shell of
different electron density than that of the column. Here
the wake will be represented by a cylindrically strati-
fied plasma. The problem of a horizontal electric dipole
located in the wake will be formulated using a scheme
that readily lends itself to computer calculation.

2. Integral Formulation of Fields for Horizontal Dipole

The regions are numbered ¢, where i=1,2,3, - - - ,N+1.
Region N + 1 is free space.

The free-space region i = N + 1 is characterized by
permittivity €, and permeability p,. According to the
magneto-ionic theory description for a homogeneous, iso-
tropic, and lossless plasma, the plasma region i is repre-
sented by a medium whose permittivity €; is given by

(Ref. 1)
N2
€ = l:l — (ﬂl> :Iéo (1)
o
where
n; e?
wfi = —meo @)

with n; representing the electron density, e the electron
charge, m the electron mass, and w,; the electron plasma
frequency. The propagetion constant of region i is then
given by

ki = o?e€;

Assuming a time dependence of ¢!, the respective
electric and magnetic field intensities, E and H, are related
to the electric (7) and magnetic (n*) Hertz potentials
through the following equations:

E=V XV X™®~jop, V X 7* 3)
H=V XV X7+ eV X T (4)

where € is the intrinsic permittivity of the medium,
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The electric dipole of moment il is assumed io be
located at (pa, ¢, z0) and oriented in the x dirwction in
plasma region m (Fig. 3). The x component of ', 7, will
therefore represent the primary field and s tisfy the fol-
lowing equation:

(V2 -+ k&) mem = —=—8 (¢ — ¢0) 8 (z — 20) 5(p -~ po)
70’€m P
(5)

where § is the Dirac delta function and the subscript m
refers to the region m. Since both E; and H. will be pres-
ent in the sccundary ficlds, the respective z components of
m and ™, =,; and #};, will be used for region 1 and will
satisfy the following wave equaiions:

(V2 -+ k) mei == 0 (6)

(V2 +ki)xz =0 (7)

Integral representations for the Hertz potentials can be
written using a Fourier integral in the z direction and a

Fourier series in the ¢ direction (Ref. 2). For the primary
field in region m,

_n1
Tom = fen, 8nf
X E / H (Anp) T (A po) €999 g-Ihtz-20) dp,
8)
where

A3, =k3, — h?
I is the nth-order Bessel function of the first kind and
H{? is the nth-order Hankel function of the second kind.
Equation (8) is for p > po; when p < po, p and p, must be

interchanged in the equation. For the secondary fields, the
following results apply for region i:

ra= S [T I 0in) + o0 P (1)

X g1 g-ihte-20 dh, ©)

- f C1B T i) + 5 HE ()]

==

X i1 g-Mtz-20 dfy (10)
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A
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PERMEABILITY | g |. . . o oo | mg || o [ro

DIPOLE
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( Por $or zo) FREE SPACE

— -

RADIUS PL Pm-i Pm Pi-1 Pi Pisl PN =1 PN ,

Fig. 3. Geometry of the problem

where

= ki — h?

The superscript ¢ in the coefficients a,, b, ¢,, and d,, refers
to the fields in region i. Since the fields are finite at
p =0, ¢ =d® = 0. Also, since outgoing waves are in
the free-space region { = N + 1,a{? = b+ =,

The cylindrical components of E and H for region ¢ can
be obtained using Egs. (3) and (4).

82
Ezi (a 2 + ki )Wzi (11)
- 1 a ‘n'g; N ?EZ_
E,N = a¢> % + Jopo ap (12)
=& fope O3
Hi= (2 +1 ) (14)
zi azz zi
___1_ 321r:; . aﬂ'zi
2
Hp = 027, o€y Omay (16)

dp 0z p 0

JPL SPACE PROGRAMS SUMMARY 37-54, VOL. Il

- v




e, SHESOY. o, e

The following are additional components in region m due
to the primary field:

(18)
1 a-:rm 10 Tam
Epn (? % p 3¢3P> »
l a'fl’_pm 1 az Tzm aﬂﬂrm
(F op +p"’ o¢* " )COS¢
(19)

r o1 a®
b
=M® M@ ..o MO A M M®-D ..
CN+)
n
d'(INH) 0
where

M,‘,“ = [B#M]1 A7(’i)

r Ailn (/\1 Pi) 0
0 A3 Ta (M pi)
() == A
A _11" Ja(Mipi) fopo Mg J5 (Ai pi)
L—ﬁﬂei AT (hips) (As p3)

B{ is similar to A{? except that A; and ¢; are replaced by Ai.. and €., respectively; and [B®]-* =0,

Oy 1
Hew = B 8 - sin ¢ — fo€y— (

rm cos ¢

, 0
H m = Jw€n _%Z—

O
Hpp = fo€n———sin ¢

az

(A3 : (.;m > cos d>
(20)

(21)

(22)

The boundary conditions at p, require that the tangential
E and H fields be continuous. Imposing these boundary
conditions at each boundary p, yields the following results

in matrix form:

Y (m)
7"

(m)
g

o

M ;mu) [B ,('m) ] -1

MHP (M p3)
0
._Lh. H(z) (M Pi)

pi

—joe; M H{P' (Mi pi)

—_ (m) (m-11]-1
M B

M H® (M p3)
AHS (0 o)

—nh
-ﬂ_]n ()\i Pi)

(m-1)

Yﬂ

(m-~1)

77"

(m~1)
Gy

By
(%)

0 -

Il .
Yf;m) _ Eu’m A [ej(n+1)¢o]m_l ()tm po) — el Ia- 1()\m po)] H ()\m Pm)
n A
el *dopo Topn [e“m)% Tuss (A po) + €19 Joy (A po) | HP (i pm)
1l
a,ﬁ'”’ = Zr‘w[-togcig {[(k?,, + he) el (n+1ido Inu ()\m Po) + AR el ”%]u -1 Am Po)] Hnu (Am Pm) é

= L{kh + h2) e w00 ],y (A po) + A €? 1% Loy (A po)] HZ, (A pus))}

Il
gL = - °’“°4_— L&/ ™80 L. (A po) HZ, (A pm) + €90 I (A po) HE), (A puo)]
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The quantities y(", »{m1, o and BV are obtained from ™, 4™, & and B ™, vespectively, by changing p,
to puw 1 and pu to pa. Equality (23) consists of four equations and four unknown coefficients and can be readily solved.
The remaining coefficients are obtained through the following recursion relationship:

a](‘in) afli) v(nm) ,y(m—1)
J n

b,(lin) b(i) n(m) 17(m~1)

3 n » . 1} n .
ay [ = M2 o | BT 8(i —m) + [B{"]* 8(i—m+1)

c(z+1) C(l) a(m) a(m—l)
n n n n

i+1 i) ) {(m-1)
d;u ) d§| (Z ,8"

3. Radiation Patterns for Horizontal Dipole

(24)

The radiation fields are obtained by using the method of saddle-point integration (Ref. 3) to evaluate the integral
expressions of the fields in free space. The resnlting spherical components of the radiation fields are

e-—ij
E, = —2k?sin g git#acoso
L
N - (n+1)
X nzz_w c:; +1) e jng+j(ne1)w/2 (25)
€, \ %
Hq} = (_o'> Ee
o
i
E4 = 20po ksin g gftzoces0
0
X 2 d;Nu) e-inpsi(ns1ymy/e (26)

n=-0

where k is the free-space wave number, ¢(¥* and d{*+»
are given in Eq. (23), and

A=k — k2 cos? 6
h=kcosd

It should be noted that the corresponding modified Bessel
functions must be used when A} < 0.
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XXIl. Spacecraft Telemetry and Command
TELECOMMUNICATIONS DIVISION

A. Approximate Analysis of Channel Imbalance
Effects in Non-Coherent FSK Receivers
With Large BT Products, C. Carl

1. introduction

Binary non-coherent frequency-shift-keyed (FSK) sys-
tems with large IF bandwidth-to-bit-rate ratios, or BT,
are being considered for applications where simplicity
and reliability of operation are worth the cost of decreased
efficiency compared with, for example, phase-shift-keyed
(PSK) modulation techniques. Such an application is the
planetary capsule-spacecraft relay link. The typical re-
ceiver is shown in Fig, 1. Either frequency f, or f, is sent,
corresponding to a data 1 or 0, square law detected,
integrated over the bit interval T, and detected as a
data 1 or 0 (bit synchronization at the data detector is
assumed). For recciver design purposes, the effect on
performance must be determined when the two channels
(at f, and f,) are unbalanced with respect to bandwidth,
carrier attenuation, etc., so that the appropriate hard-
ware tolerances may be specified. The effect of ac-coupling
the data detector must also be considered.

2, Analysis

The analysis involves a straightforward expansion of
Glenn’s (Ref. 1) work on the balanced receiver. As in
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Ref. 1, the central-limit theorem is invoked as an approxi-
mation for N = BT > 10; i.e., the statistics at the output
of the integrator approach gaussian for large values of N.*

The receiver model to be analyzed is showu in Fig. 2,
where B,, o;, and A; are the channel Landwidths, carrier
attenuation, and channel attenuations, respectively; i.e.,

[ I H() | df
B, =i
‘ Himax {2
_ THi{f) I?
= lHim:\x lz

A “balancing amplifier” has been added to channe! 2 to
ascertain whether the imbalance may be minimized by
adjustment of the gain. Let the integrator-detector be
dc-coupled for the present. The error probability will
be evaluated by calculating the conditional error prob-
abilities, given that a one (hypothesis H;) or a zero (H,)
is sent, and averaging them with respect to H;.

!Subsequent work has shown this assumption to be pessimistic in
performance by a few tenths of a decibel (to be published).
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Fig. 1. Typical non-coherent FSK receiver
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Fig. 2. FSK receiver moriel

Marcum (Ref. 2) has shown that the probability
density of a sum of N samples (i.e., integral) of the out-
put of a square lo  detector, when the input is signal-
plus-noise and noise only, is

y N~-1/2
peoel) = ()0 Ly 12V,

y>0
yN—le*ﬂ

paly) = W=

and the required moments are

Ha+n = N(l + a)

ot.,= N(L + 2)
pn = N
o2 =N

where y is normalized to 2BN, and a = S/(N,B); S/N,
is the signal-to-noise density ratio at the receiver input.
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Removing the normalization (since B is not the same for
both channels) and assuming H = H,, the moments at
the integrator output due to each channel separately,
neglecting tue suptractor, are

m = 2B:TNLA, (1 L >

N,B,
. ST An 20,5
ot = 4B'TN: A: (1 + N.,b,)
pe = 2B:TN,AC
ot = ABTAIN:G?

where G is the amplifier gain, Combining the channels
through the subtractor, the probability of error, with the
gaussian assumption, is

P(e| Hs) = —;: {1 ~ et [% i’ﬂ—_"—)z]}

R
gy T o,

[NgA,,G — N?A, + NLAG ( 95T )]

where

2 z
erf (x) = = / e dt
0

™

After some algebra,

P(e | Hy) =
2\ Y2
. 1[N‘-; A, — N: AG + AN, (2NS-T—>]
=\ 1—ef (5~ -
2 2 . e 1 Ao are [20.ST
Nt Az + N3 A:Gt + A2 N2 (—N—)
(1a)

where N, = B;T. Similarly for H = H,, the probability
of error may be evaluated to obtain

No (1b)

Ple|H)=—5 | 1—af +

Since P(H,) = P(H,) =% , the average probability of
error is
1 1
P(e) = 5 P(e |H,) + 5 P(e | H,) (2)

3. Choice of Amplifier Gain

This amplification may be thought of as an operation
that is compensating for some of the receiver imbalauce
by improving the detector efficiency (i.e., approaching a
maximum likelihood decision rule). One might speculate
on “optimum” values of G that minimize P(e), which in
general would be functions of ST/N, and therefore be
difficult to mechanize in hardware, As a practical matter
then, G will be selected by some simple method to
determine what improvements in perforimance (if any) that
may be achieved.

First, for G = 1 (the unbalanced receiver), the prob-
ability of error from Eq. (2) becomes
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NIA? + NIAIG? + G*AIN? <—-)

20,ST
N,

. 1 [NfR — NI+ RN._I‘(%T;) ]
Ple) =51 2 — erf( 5 L2

% N3R: 4+ N3 + 2I‘R2Nf(ST)

N,

ST 2\ '
. [N; ~ N°R + N, (T>2]

2 RN? + N3+ 2N (%T-)
0/

— erf

(8)

where (ST/N,), is that ratio in channel 2 bandpass; i..,

ST _ m ST
NO 2 ND

and

2i3

.




As the second case, let G be chosen such that the
signal-only output from each channel are equal or

" ‘"1 = oo iy N.—0

Hence,

2B TN, A, <1

S _ LS
+ T’OB—) W 2BiTN,A. G< i

B::Nul
As Nn'_>0,
v BlalAl . &
C= Bwa, W, L

Substituting this into Eq. (2),

ST N
1 ':Nl _N“F+F(N_.,>]

2 N, +N,T:. +2F<-‘%’—’)

[NJ‘ N, + F(ZSTT) ]2 :
— erf l ¢

ST
2 Ny + N.T? + oI (SN>

0 /s

Ple) = -}I- 2 — erf

4)

Finally, let G be chosen such that the variance of the
two conditional detection densities be equal; i.e.,

2 2, = 2 2
01+0'3|”1 o? |‘o'2 .

Solving,
and

G = (N/N,) RT™, independent of both ST/N,,

[rone ()

Pe)= 1| 2~ et :
l N, + N,T + o

[NZI‘"“ N, + I (§T> 1"
— erf _]2; 0/2
N, + N,T' + 2T (%T-)
/2

Note that dependence on A; in Egs. (4) and (5) has been
remeved. In addition, if R=0=1, and N, =N, = N,
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from Eqs. (3-5) the balanced case

('%T:Y "

is obtained, which checks with Ref. 1.

P(e) = 1—erf

o] —

4, AC-Coupling

If the integrator is now ac-coupled, with the given
gain scttings established above, different performance is
achieved, Ac-coupling removes the mean (de) compo-
nent, which is (s, + pun,)/2, and the means become

Py + Bty i T Pl

('U”’I):u' = Pary — 2 - 9
_ e N P
(I‘L”g),”v - Hl/g - 2 - = 2

The variances are unaffected. Making the necessary
changes in Eqgs. (3-5), the probability of error, for G =1

(imbalance) becomes
(RN I+ N, ) ( > va
3 3 2 T
NiR: + N2 + 2I'R:N? ( >

1 2 N, /,
—erf | =

NiR + N2 -+ 2N (ST)
2

P(e)=i— 2 — erf -%—

N,
)
For G = (N,/N,)RT" (signal balance),
I ( ST ) ¥
Ple) =02 erf| + — N"’ST
N + NoT? 4 21‘(N )
@) T
—erf | = A

N, + NI + 2F2(ZSVT)
0

(8)
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For G -~ (N,/N)RI" (variance balance),

: P I\ ST e
)T
2N1~!NI"°T(?\,{:>“§

©)

xo]u

P(e) =

- Cr

Some typical results are shown in Figs. 3 and 4. Be-
causc N = BT, N is expressed in decibels (10 log [ 1) to
he compatible with conventinnal noise bandwidth nota-
tion; I" and R arc also expressed in 10 log [ ] form, Given
Powa(e) = fumat(ST/NL) and Po.(e) = fua(ST/N,) for
the unbalanced and balanced (N = N.) receivers, respee-
tively, degradation (in dB) is defined by

91

Degradation ( ;\,l ) = — b [Puwnar (€)]

Decaying curves with ST/N, mcan that Pua.a{e) =
P,.(e) at high ST/N,, ctc. One may observe from these
plots that a balance amplifier can measurably improve
performance in some cases, but not in others, Comparing
Figs. 3a and 3b, it appears that if the ratio log (N,/N.)
is of upposite sign to log K, a “compensation” is ffected,
improving the unbalanced receiver’s performance.

Ac-coupling appears to offer consistent improvement
in performance. This is particularly significant in a case
as shown in Fig. 5 where the usual P(e) is plotted (degra-
dation plots lose significance when the two curves are
substantially different). The reason for such catastrophic
dc performanc. is that the mean term implicit in P(e | H.)
in Eq. (3) has become positive and with a “decide-on-
zero” detector P(e ] H.) - 0.5. However, it is less pos-
itive than the mean term in Ple | Hy) so thut ac-coupling
provides usable performance. Balance amplifiers are not
of much use in this case. Particularly alarming is that
this case could conceivably be built using crystal filters
with ==0.5-dB tolerance in insertion loss R, passband
ripple T, and noise bandwidth N,N.. Clearly, care must
be taken when specifying filters for this application.

5. Experimental Work?

Using the FSK link described previously (SPS 87-51,
Vol. 111, pp. 311-313), verification of the theory (signal
balance case) by varying the attenuation term R was at-
tempted. The link was as shown in Fig, 2 with the

*Experimental results used in this study were obtained by
J. T. Sumida, JPL Spacecraft Telemetry and Command Section.
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channel attenuations replaced with

A AC
A, 2 A CL

where the A? were accounted for in a signal balance
amplifier and the C, adced to tost performance after
balancing. For G - (BiwA})/(BaeA%) and modifying
Eq. (4),

Ple) --
] 5 1 (NlCl CNGE O (-"NL\ >—|”
T 2—orf| = S,:[',/u
2 ONCEH NG zw::(‘z\—,) J
ST \ 7w
NIC, — NG, + T'C,
lk 1\0 o
--orf - T
NG NG 2 (7\“) S

is obtained for de-coupling; modifying Eq. (8),

(;‘l ’+ C-_» l ST Y
1 2 N, /,
2~ erf '-7)'-

2 . ST
NlCl ‘{' N'_'Czr‘ 1 2C21 (N"),_

(5@ T

— exf —},—-‘—— ST
N,C* + N,C3I™ + 2C2F-(N )

Ple) =

1
3

(11)

is obtained for ac-coupling. Figures 6 and 7 show the
theoretical results compared with the experimental re-
sults. Here degradation is referenced to the case
C, = C. = 1 (instead of the balanced receiver as above).
The laboratory results correspond well with the theory,
the differences are attributed to measurement tolerances.
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XXIHl. Spacecraft Radio

TELECOMMUNICATIONS DIVISION

A. Low-Data-Rate Telemetry RF Systems
Development, R. Postal

1. Introduction

A solid-state multiple frequency shift-keyed (MFSK)
2295-MHz transmitter has been developed as a subassem-
bly for a m-ary noncoherent telecommunication system
capable of surviving a high impact on a planetary surface.
An overall description of the transmitter was given in
SPS 37-52, Vol. I11, pp. 249-250. Of prime importance is
the oscillator frequency stability necessary to achieve the
desired communication system efficiency, Although defi-
nite stability requirements have not been established, it is
desired to have a word separation of only 10 Hz at S-band
with a word time of 5 s. In the future, a word time of
greater than 20 s may be desired. Until definite require-
ments can be established, it is an objective of this task
to determine the practical limitations of the stability of
crystal-controlled oscillators. The discussion in this article
pertains to the MFSK oscillator portion of the S-band
transmitter.

2. Oscillator Development
In attempting to provide a highly stable MFSK crystal-

controlled oscillator, several oscillator design guidelines
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were found to be necessary. These guidelines are as
follows:

(1) Use low noise transistors (2N918 or better).

(2) Maximize isolation of transistor reactances from
frequency determining circuitry.

(3) Use low leakage varactor in the control circuit.

(4) Minimize coupling to provide at least 20 dB isola-
tion between the oscillator and the following stage.

(5) Use a low noise, third overtone crystal as a series
resonant element in the range of 20-32 MHz.

(6) Set crystal drive level in the range of 50-300 xW.

(7) Minimize variations in crystal drive level.

One oscillator configuration that reflects these guidelines
is a modified Colpitts circuit. A description of this circuit
was included in SPS 37-40, Vol. I1I, pp. 198-201.

The additional requirement of high impact resistance
resulted in a contract with the Valpey-Fisher Corpora-
tion to develop a stahle, ruggedized crystal assembly.
The necessary manufacturing processes, however, were
found to be very stringent and resulted in low yields at a
very high cost per unit. A recently available ruggedized
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TO-5 crystal assenibly was also considercd as a possible
candidate for the MFSK oscillator., Units manufactured
by Monitor Products Company and McCoy Crystal Incor-
porated are shown in Fig. 1. Both crystals used a third
overtonz 31.875 MHz AT cut resonator mounted on a
four-post TO-5 header. Preliminary tests indicate the

Fig. 1. TO-5 crysta! units
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TO-5 units would meet the MFSK oscillator require-
ments. The development contract with Valpey-Fisher
has been terminated in view of the readily available,
lower cost TO-5 units.

3. Test Results

Evaluation of the TO-5 crystal assemblies included
high impact tests and measurement of frequency versus
temperature, phase noise, and spectral purity. Samples
of 12 units each from Monitor Products and McCoy Inc.
were used for these tests. Shock tests were performed in
three planes at levels ranging from 2000-10,000 g. All
units survived 2000 g; however, five McCoy units failed
at 5600 g and one Monitor unit failed during the last
plane at 10,000 g. Shock caused a Af/f ranging between
1 X 10-"and 5 X 10-% per shock, It is believed the rugged-
ness of the Monitor unit is due to the four-post direct
resonator support as opposed to the McCcy ribbon
support.

Phase noise and frequency versus temperature data of
several TO-5 units are given in Table 1. Phase noisc is
given as measured phase tracking error at S-band in a
phase-locked loop receiver with a noise bandwidth of
20 Hz. Crystal temperature performance is listed as maxi-
mum slope of Af/f per °C as measured between 15 and
40°C. Monitor sample 10 and McCoy sample 34 crystals
were then selected for spectral purity measurements.

The MFSK crystal-controlled oscillator module was
placed in an inoperative oven to minimize frequency drift
due to temperature variations. To provide measurements
at S-band, the oscillator output frequency was multiplied
to 2295 MHz and then translated to 60 KHz for process-
ing in a computer-programmed spectrum analyzer, Spec-
tral analysis is accomplished by sampling the signal with

Table 1. Phase noise and temperature data

Crystal : Phass nolse, deg peak Maximum slope, ppm/°C

Monitor

10 3.0 0.270

14 3.0 —_

15 9.0 0.125

20 9.0 0.188
McCoy

31 1.5 0,038

34 1.0 0.038

38 2.5 0.132

40 3.5 0.110
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an analog-to-digital converter. After N groups of 20T
samples are collected (where T is equal to sample time
and N is greater than 1000), each group is auto-correlated
and Fourier transformed to find its spectral peak fre-
quency and value. The program then coriputes the aver-
age value of the amplitude of each peak and computes a
loss factor in terms of spectral degradation from an ideal
oscillator. Spectral degradation data for the two crystals
are:

Average degradation, dB
T,s
Monitor 10 McCoy 34
20 5.4 1.38
10 2.3 —
5 0.4 —
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Since the McCoy sample 34 showed an improvement of
4 dB over the Monitor sample 10 for the T = 20-s case,
there was no interest in testing the McCoy unit at smaller
sample times.

4, Conclusions

The MFSK oscillator will meet the sterilization and
high-impact requirements.

The stability performance indicates that crystal-
controlled oscillators have the potential for achieving
good MFSK communication system efficiency for word
time to at least 20 s, The ultimate performance depends
on how well the drift rate of such oscillators can be con-
trolled within the specific mission constraints, Informa-
tion on this subject will be presented in future articles,
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XXIV. Mariner Telecommunications
TELECOMMUNICATIONS DIVISION

A. Photon-Actuated Solid-State Switch
Development, D. Bergens

1. Introduction

The development of a photon-actuated solid-state
switch for signal transmission with electrical isolation was
introduced in SPS 37-44, Vol. IV, pp. 320-325. The
switch’s electrical and environmental requirements and
general configuration were given. Results were discussed
for phase I, which consisted of the design, fabrication,
and testing of gallium-arsenide diode-phototransistor
combinations, and the electrical design of the gate and
driver circuit. The results of phase II, in which the gate-
driver was fabricated as an integrated circuit, and com-
plete switches were assembled and tested, are summarized
in this article. The photon-switch development was per-
formed by Texas Instruments, Inc. (TI), under a NASA-
JPL subcontract.

2. Driver

a. Design. Figure 1 is the schematic diagram of the
complete photon switch. The gallium-arsenide diode is
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Fig. 1. Photon-switch schematic diagram

D2 and the silicon phototransistor is Q3. The remainder
of the circuit is the gate and driver. The circuit is straight-
forward and needs no explanation, except for R5, which
was added to provide a greater off-margin when the
switch input is at 1 V, by shunting current around D2.
The shunting effect of R5 is not serious at high currents
when the driver is on because of the logarithmic char-
acteristic of the diode. The supply voltage requirement
was 4 =%V,
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The gate~driver design was worst-case-designed with
parameters of integrated-circuit transistors and resistors,
This required the establishment of margins on the semi-
conductor processing (resistivity ranges, diffusion depths,
cte.). A transistor configiration with which TI had pre-
vious experience and Jata was used for all transistors.
Its cmitter-base junction was used for the input diodes.
The base diffusion was used for all the resistors because
it has the lowest temperature cocffizient. The resistivity
range-of-routine base diffusion was wider than needed
for the worst-case design. This problem was resolved in
the resistor layout by tapping the resistors and providing
a choice of interconnect metalizations to pick up the
appropriate taps.

The layout of the gate-driver integrated circuit is
shown in Fig. 2. This is also a compositc drawing of the
mask for the integrated circuit. Several features of the
layout require an explanation, Four of the standard tran-
sistors were used in parallel for Q2, because its emitter
current can be as high as 44 mA and the optimum emitter
current of the standard transistor is only 10 mA. For future
expansion and yield considerations, 14 input diodes were
designed in and around the perimeter of the chip, The
resistors were tapped to provide the different lengths
needed to account for the resistivity range. A choice of
two metalizations was sufficient to match the expected
resistivity range to the required resistor ratios, The most

critical resistor, R3, is actually two resistors of different
dimensions in parallel to provide a finer resolution adjust-
ment. Additional taps were also included for experimental
reasons.

b. Processing. Routine triple diffusion processing for
integrated circuits was used for the gate-driver circuit.
Seven photographic masks were requived—3 for diffusions
and 4 for contact windows and metalizations. A number
of cvaluations was made during the processing of the
prototype runs. Transistor gains were measured. The
resistors were probed on the slice before the final inter-
conncet metalization to establish the resistivity range and
the choice between the two metalizations, The base resis-
tivity was within the cxpected range for the prototype
runs.

3. Photon-Switch Assembly

The complete photon switch consists of 7 parts: the
gate-driver chip, phototransistor, GaAs diode, 2 ceramic
insulators, the 14-lcad to TO-84 package, and the package
lid. Other materials used in assembling the switch are
the SeSAs-glass, epoxy, gold-wire, and gold-solder pre-
forms. The major assembly steps are shown in Fig. 3. The
assembly procedure is:

(1) Solder the phototransistor and gate-driver chips to
the ceramic insulators.

60 =
.

50 z
H
N

40

30

20

1 =
.
=1

0

0 10 20 30 40 50 60 70 80 90 100
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Fig. 2. Gate—driver circuit component layout
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AN M

3, MOUNT GaAs DIODE AND BOND LEADS

Fig. 3. Major assembly steps for photon switch

(2) Solder the ceramic subassemblies into the flat pack-
age.

(3) Bond leads between pads on the phototransistor
and gate-driver chips, and the header pads.

(4) Bond leads to the unmounted GaAs diode.

(5) Mount the diode to the photon-sensitive region of
the phototransistor with the SeSAs glass.

(8) Bond the diode leads to the header and gate-driver
pads.

(7) Cover the periphery of the diode with epoxy for
added support at high temperature.

(8) Clean and hermetically seal the package.
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Figure 4 is a sketch of the completed assembly hefore
sealing. The relative size of an unscaled switch is shown
in Fig. 5,

4, Tests

a. Environmental. Sample lots of photon switches were
subjected to variable frequency vibration, physical shock,
centrifuge, and temperature cycling to determine if there
were any problems that would preclude their use in space-
craft equipment. There were no failures.

b. Electrical. Thirty photon switches fabricated with
prototype drivers were delivered to JPL at the end of
phase IL The clectrical characteristics of these switches
are summarized in Table 1. The parameter I, is a more
sensitive measure of the output than V,,,, because I is
taken at V., = 0.6, which is at the edge of transistor satn-
ration. An explanation of the noise transmissibility param-
cter was given in SPS 37-44, Vol, 1V, Table 1 shows that
all the switches met design sg ceifications.

The primary requirement, however, is that the switches
meet these specifications after 10,000 h of operation. For
this reason, TI established guard bands on I, and I,., of
5 mA and 10 pA, respectively, to allow for aging. These
two parameters are the ones most likely to change with
time. A gradual decrease in I, is expected due to a very
slow degradation of photon output from the diode. This
degradation, which is thought to occur only when the
photon-emitting diode is on, determines the ultimate life
of the switch. Some drift in transistor I.., with time is not
unusual, but it should not change more than 2-1 in geol
transistors over 16,000 h of operation, The guard band on
initial parameters allows for these changes.

¢. Life. Twenty-nine of the 30 photon switches were
placed on life test in a daisy chain configuration, with
the output of one connected to the input of the next, ete.
When power is applied, the configuration oscillates be-
cause there is an odd number of stages. Each switch is
turned on and off at a 1.75-kHz rate. The duty cycle
is about 50%. The primary parameter of interest in life
testing is I. because it is the most sensitive indicator of
change. In 3,500 h of operation, the degradation of I, has
been minor.

Twelve of the phase I diode-phototransistor pairs were
operated with a constant diode current of 30 mA for
14,000 h to determine the aging rate. During this time,
the average decrease in I, was 3 mA, and the maximum
decrease was 742 mA. In 7 of the 12 switches, the decrease
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Fig. 4. Completed photo-switch assembly before sealing
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Table 1. Electrical characteristics of 30 photon-actuated isolaiion switches

Measured valve Specified value ]
Parameter Test conditions™ "
Min Av Max Min Max
Qutput on-voltage V..., vV e = 10mA, Ve =35V, Vin ™ 30V
Temperature =~ —20°C — — 0115 —_ 0.6
+25°C - —_ 0.150 — 0.6
-+100°C - — 0.240 — 0.6
Qutput on-current I, mA Vee =06V, Y.\ 235V, YVin — 30V
Temperature = —20°C 28 43 57 10 —
+25°C 26 33 43 0 —
+100°C 15 19 26 10 —_
Output breakdown I- 7= 100 pA 60 68 — 35 —
voltage BV cco, ¥
Oulput leakage Vin =1.0Y,Vea =20V, V. =45V
current leco, pA Temperature = +25°C — 0.0013 0.0043 - 0.1
+100°C — 2.7 9.9 — 20
Isolation capacitance Cy .., pF Frequency = 1 kHz — 2.0 2.5 — 10
Input breakdown lin 72 10 pA 7.2 8.0 — 6.5 | —
voltaye BYms, V
Input off-current Iin, mA Vin =0,V.c =45V —_ 0.19 0.21 —_ 1
Input on-current, nA Vian = 60V,Vee =45V — <1 2.2 — 3 %0
Power dissipation-on Pon, mW Vin =60V, Vee =45Y
Temperature == —20°C 155 164 180 — 200
+25°C 148 158 172 —_— 200
+100°C 136 142 153 —_— ) 200
Power dissipation-off Poss, mW Vian =0,V =45Y
Temperature == —20°C —_ — 0.97 — 1
+25°C —_ 0.89 0.96 —_— 1
+100°C — —_ 0.89 — 1
Switching time-on #, us le = 10 mA, Ve =45,
Veorors) = 20V 2.8 4.0 5.8 -— 10
Switching time-off 1z, us I =10mA, V. =45, 43 7 98 - 100
Veoror) =20V
Noise transmissibility (emitter Ie=2mA,YVia=0 — 1.8 2.0 —_— 2
to collector) Va, V
sFree qir temperature: - 25°C unless specified otherwise.
byce == supply voltage, Vin = input voll Veo = coll to.emitter voltage.
i
i
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was 2 mA or less. The lowest I, of the 12 switches was
15 mA, after 14,000 h. The rate of change of I, during
the tost vsas approximately linear with time. Eight other
diode-transistor pairs that were not operated during the
14,000 h show no change in I,. The TI engincers believe
the aging -ate can be directly extrapolated upward in
time for switch duty cycles less than 100%. For example,
if the duty cycle were 10%, it would take ten times as
long for 1. to decrease the same ¢ nount.

The saturation voltage of the 12 switches increased
an average of 11 mV. The maximum increase was 25 mV.
Seven of the 12 increaced less than 8 mV. These changes

are relatively minor.

One hundred photon switches have been ordered from
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TI for space flight qualification testing at JPL. When the
qualification tests have been successfully completed, the
photon switch will be ready for use as interface circuits
in the command, central computer and sequencer, and
other spacecraft subsystems. They can also be used to
interface the ground support equipment with the space-
craft, thus eliminating many of the noise problems en-
countered during checkout.

TI is marketing the phase I diode~transistor pair in a
TO-5 can under the designation TIXL 103. It is called
an optically coupled isolator.

A patent application has been filed on the photon

switch by JPL. The innovation claimed is “a digital logic
gate whose output is electrically isolated tromn the inputs.”
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